139 research outputs found

    Functional activity but not gene expression of toll-like receptors is decreased in the preterm versus term human placenta

    Get PDF
    INTRODUCTION: Toll-like receptor (TLR) activity within gestation-associated tissues might have a role in normal pregnancy progression as well as adverse obstetric outcomes such as preterm birth (PTB). METHODS: The expression and activity of TLRs 1 – 9 in placentas collected following preterm vaginal delivery after infection-associated preterm labour (IA-PTL) at 25 – 36 weeks of gestation (preterm-svd, n = 10) were compared with those obtained after normal vaginal delivery at term (term-laboured; n=17). Placental explants were cultured in the presence of agonists for TLR2, 3, 4, 5, 7, 8 and 9 and cytokine production after 24 hours examined. Expression of TLR transcripts was determined using real time quantitative PCR. RESULTS: Reactivity to all agonists except CpG oligonucleotides was observed indicating that other than TLR9 all of the receptors studied yielded functional responses both term and preterm. Significantly less TNFα and IL-6, but not IL-10, were produced by preterm than term samples in response to all TLR agonists. Changes in TLR mRNA expression did not underlie functional differences in the preterm and term groups; nor does a pre-exposure/tolerance model mimic this finding. While glucocorticoids suppressed cytokine production in an in vitro model using term tissue the association between lower gestational age and decreased cytokine outputs suggests a temporally regulated response. DISCUSSION: Pro-inflammatory cytokine output in response to multiple TLR ligands was decreased in the preterm compared to the term placenta but gene expression for each TLR tended to be similar. Reduced cytokine production by the preterm placenta in response to stimulation of TLRs therefore must be regulated at the post-transcriptional level in a gestational age dependent manner

    Maternal serum, an isolation and expansion tool for umbilical cord matrix mesenchymal stromal cells

    Get PDF
    The umbilical cord offers a source of readily available mesenchymal stromal cells for use in research and ultimately therapeutic application. However, methods of isolating these cells vary between investigators, and no standard method has been adopted. The aims of this work were to i) develop a methodology for the isolation of umbilical cord matrix cells without the use of enzymatic digestion or complicated dissection; ii) investigate the use of pooled maternal serum as a media supplement; and iii) to demonstrate that the cells isolated were mesenchymal stromal cells. We have demonstrated that incubating tissue explants of less than 2mm3 in serum for an hour, followed by the gradual addition of serum containing culture medium can increase cell yield compared to incubation in serum containing culture medium alone. More importantly, our method demonstrated that the use of pooled serum from women > 37 weeks pregnant (pooled maternal serum) yields higher cell numbers than the use of fetal bovine serum or pooled umbilical cord serum. Irrespective of the type of serum used the isolated cells were mesenchymal stromal cells according to the minimal criteria set out by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy. In conclusion, maternal serum has the potential to be used as an alternative to FBS for isolation and expansion of umbilical cord MSCs for clinical purposes

    Influential Article Review - Can Economic Growth be Driven by Port and Logistics Performance?

    Get PDF
    This paper examines economics. We present insights from a highly influential paper. Here are the highlights from this paper: Considering 91 countries with seaports, this study conducted an empirical inquiry into the broader economic contribution of seaborne trade, from a port infrastructure quality and logistics performance perspective. Investment in quality improvement of port infrastructure and its contribution to the economy are often questioned by politicians, investors and the general public. A structural equation model (SEM) is used to provide empirical evidence of significant economic impacts of port infrastructure quality and logistics performance. Furthermore, analysis of a multi-group SEM is performed by dividing countries into developed and developing economy groups. The results reveal that it is vital for developing countries to continuously improve the quality of port infrastructure as it contributes to better logistics performance, leading to higher seaborne trade, yielding higher economic growth. However, this association weakens as the developing countries become richer. For our overseas readers, we then present the insights from this paper in Spanish, French, Portuguese, and German

    Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells

    Get PDF
    Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration

    Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy?

    Get PDF
    Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy

    A high-throughput serum Raman spectroscopy platform and methodology for colorectal cancer diagnostics

    Get PDF
    Vibrational spectroscopic techniques such as Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) have huge potential for the analysis of biological specimens. The techniques allow the user to gain label-free, non-destructive biochemical information about a given sample. Previous studies using vibrational spectroscopy with the specific application of diagnosing colorectal diseases such as cancer have mainly focused on in-vivo or in-vitro studies of tissue specimens using microscopy or probe based techniques. There have been few studies of vibrational spectroscopic techniques based on the analysis of blood serum for the advancement of colorectal cancer diagnostics. With growing interest in the field of liquid biopsies, this study presents the development of a high-throughput (HT) serum Raman spectroscopy platform and methodology and compares dry and liquid data acquisition of serum samples. This work considers factors contributing to translatability of the methodologies such as HT design, inter-user variability and sample handling effects on diagnostic capability. The HT Raman methods were tested on a pilot dataset of serum from 30 cancer patients and 30 matched control patients using statistical analysis via cross-validated PLS-DA with a maximum achieved a sensitivity of 83% and specificity of 83% for detecting colorectal cancer

    A role for metabolism in determining neonatal immune function

    Get PDF
    Immune responses of neonates differ markedly to those of adults, with skewed cytokine phenotypes, reduced inflammatory properties and drastically diminished memory function. Recent research efforts have started to unravel the role of cellular metabolism in determining immune cell fate and function. For studies in humans, much of the work on metabolic mechanisms underpinning innate and adaptive immune responses by different haematopoietic cell types is in adults. Studies investigating the contribution of metabolic adaptation in the unique setting of early life are just emerging, and much more work is needed to elucidate the contribution of metabolism to neonatal immune responses. Here, we discuss our current understanding of neonatal immune responses, examine some of the latest developments in neonatal immunometabolism and consider the possible role of altered metabolism to the distinctive immune phenotype of the neonate. Understanding the role of metabolism in regulating immune function at this critical stage in life has direct benefit for the child by affording opportunities to maximize immediate and long-term health. Additionally, gaining insight into the diversity of human immune function and naturally evolved immunometabolic strategies that modulate immune function could be harnessed for a wide range of opportunities including new therapeutic approaches
    • …
    corecore