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A high-throughput serum Raman spectroscopy platform and
methodology for colorectal cancer diagnostics
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¢ Swansea University Medical School, Institute of Life Science 1, Swansea University, Swansea,
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Swansea, UK {Present address: WestCHEM, Department of Pure and Applied Chemistry, Technol-
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Vibrational spectroscopic techniques such as Raman spectroscopy and Fourier
transform infrared spectroscopy (FTIR) have huge potential for the analysis of bio-
logical specimens. The techniques allow the user to gain label-free, non-destructive
biochemical information about a given sample. Previous studies using vibrational
spectroscopy with the specific application of diagnosing colorectal diseases such as
cancer have mainly focused on in-vivo or in-vitro studies of tissue specimens using
microscopy or probe based techniques. There have been few studies of vibrational
spectroscopic techniques based on the analysis of blood serum for the advancement
of colorectal cancer diagnostics. With growing interest in the field of liquid biopsies,
this study presents the development of a high-throughput (HT) serum Raman spec-
troscopy platform and methodology and compares dry and liquid data acquisition
of serum samples. This work considers factors contributing to translatability of the
methodologies such as HT design, inter-user variability and sample handling effects
on diagnostic capability. The HT Raman methods were tested on a pilot dataset
of serum from 30 cancer patients and 30 matched control patients using statistical
analysis via cross-validated PLS-DA with a maximum achieved a sensitivity of 83%
and specificity of 83% for detecting colorectal cancer.



1 Introduction

Colorectal cancer (CRC) is the fourth most common cancer in the UK and is the third most common
cause of cancer death globally.1:>There are difficulties associated with diagnosing CRC early as there
are no specific ‘red flag’ symptoms.> This results in large numbers of patients being referred on a 2
week wait ‘fast-track’ pathway to have cancer excluded in accordance with NICE guidance.The ‘high
risk’ symptoms qualifying for the pathway have just a 3% positive predictive value which means that
the majority of the large numbers of patients referred do not have cancer. Currently, the ‘gold standard’
diagnostic test for CRC is colonoscopy with sensitivity 95% and specificity 90%. As a specialised
investigation requiring a skilled operator timely access to colonoscopy is restricted. The procedure
is costly (£401, NHS England tariff+), carries a risk of complication, is often poorly tolerated by the
patient and requires oral bowel cleansing preparation. There is therefore a pressing need for a less
invasive yet highly accurate test for colorectal cancer to streamline the need for confirmatory testing
and assist with earlier detection of cancer.

Raman spectroscopy (RS) is a vibrational spectroscopy technique providing unique spectral char-
acteristics from the scattering of incident light interacting with the sample in question. When used
appropriately it is a non-destructive technique that has been previously reported in pilot studies for
the detection of cancer in both in vitro and in-vivo studies.>® Previously, emphasis has been made
on the use of Raman spectroscopy for histopathology applications and it has been shown that Ra-
man spectroscopy can be used to accurately differentiate between diseased and healthy tissue in
gastrointestinal, oral, breast and brain cancers.%!! More recently, there have been studies exploring
the potential of Raman spectroscopy to analyse biofluids for disease detection using plasma, serum
and urine.>~1% These are more accessible than tissue samples traditionally used to perform Raman
analysis. However, despite protocols being published to try and standardise RS analysis of biological
samples, there is a lack of large biofluid serum RS studies towards clinical translation compared to
similar FTIR applications. '>1¢ This includes studies into inter-operator usability and the effect of dif-
ferent sampling modalities and pre-analytical considerations for biofluid RS where these have been
reported for FTIR.17-18 Another potential hurdle of biofluid RS are the lack of high throughput (HT)
systems for different sampling modes, such as liquid and dry samples.

This study presents the development of high throughput (HT) platforms for liquid and dry serum
RS for colorectal cancer detection. Currently the referral of symptomatic patients into secondary care
is very high with only 3-5% of referrals ultimately being diagnosed with CRC. This provides the ratio-
nale for a blood test approach using Raman Spectroscopy. The HT platform has been developed for
use as a potential triage tool in primary care for symptomatic patients with suspected colorectal can-
cer. The method has been refined using cell free serum in line with traditional pathology laboratory
techniques. Serum has better long term stability than whole blood without the spectral contamination
from cellular or coagulation factors. The principles of the HT platforms developed within this study
are not limited to serum however and would be applicable to any biofluid sample. The HT platforms
are tested in a pilot study and compared in a cohort of 60 patients (30 cancer and 30 healthy) using
partial least squares discriminant analysis (PLS-DA). This is in line with previous vibrational spectro-
scopic pilot studies for cancer detection.!#19-21 The work will investigate spectral reproducibility of
serum Raman spectra in the liquid HT platform considering effects of sampling modality and freeze-
thaw cycles on the diagnostic capability of the method. Clinical discrimination will be investigated
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Table 1 Patient demographic summary information for the diagnostic study

Study Group Number Patients Mean age (years) Number smokers Number Males Number Females

Cancer 30 67.7 £9.7 8 15 15
Control 30 65.0 & 12.8 3 13 17
Total 60 66.4 + 11.3 11 28 32

and compared between methods using cross-validated PLS-DA. The results of this study show great
potential for a HT Raman platform as a novel diagnostic tool for CRC detection.

2 Materials and methods

2.1 Ethical approval and patient recruitment

Informed consents were obtained from all participants of this study. Blood samples from all patients
were collected after informed consent. Full ethical approval for all aspects of this study was granted
by the Wales Research and Ethics Committee (REC reference 14/WA/0028). Serum samples from
all patients were collected by trained phlebotomists through a collaboration with Abertawe Bro Mor-
gannwg University Local Health Board (ABMU). Samples were collected and analysed in accordance
with the UK policy framework for health and social care research. All samples in the work presented
were collected from a secondary care patient population. Samples from patients with colorectal can-
cer were confirmed to be adenocarcinoma by a pathologist. Healthy control patient samples were
collected after confirmation of a negative colonoscopy.

2.2 Patient demographics

A total of 60 patients were recruited for this study into 2 sample groups. The study groups included
early and late stage colorectal cancer patients (TNM stage T1-4) and control patients who were con-
firmed not to have colorectal cancer by a normal colonoscopy. Both cohorts were age and sex matched
as seen in Table 1. All patients were fasted for at least 8h prior to blood collection to eliminate the
influence of the fed state.

2.3 Serum separation

Blood was collected via venous collection into Vacutainer SST collection tubes (BD, USA). Samples
were spun at 1300rcf for 10 mins within 2 hours of collection. Fresh samples (250 ul aliquots)
were then kept on ice until data collection within 24hrs of blood collection as to prevent sample
degradation. The remainder of the samples were aliquoted again at 250 ul and stored at -80°C.
Frozen samples were passively thawed on ice to room temperature and data was collected within 24h
of thawing.

2.4 Spectroscopic data collection
2.4.1 Raman spectroscopy.

Raman spectra were collected using an inVia Raman Reflex spectrometer (Renishaw, UK). The instru-
ment is equipped with a 785nm diode laser light source and an ND:YAG 532nm laser source. The
system is equipped with two diffraction gratings with 1200g/mm for measurements with the 785nm
laser source and a 2400g/mm grating for use with the 532nm laser source. The spectrometer is
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equipped with an upright microscope (Leica, USA) with 50x and 10x dry objectives. The spectrometer
was calibrated using an internal silicon reference to 520.7 + 0.5 cm~! each day before measurement.
All spectra in this work were collected using a static scan across the full grating for each laser in the
spectral region between 610 cm~! and 1720 cm~!.

The spectral acquisition utilises rapid but multiple exposures to collect individual spectra which
are then accumulated into one representative spectrum. This allows for assessment of sample degra-
dation. Analysis of the spectra as a function of exposure confirms that the powers detailed below were
suitable to preserve the integrity of the serum samples. Use of this acquisition methodology allows
self-consistent checks of sample integrity in relation to the diagnostic model development.

2.4.1.1 Substrate optimisation studies. Substrates were interrogated with the 785 nm laser line
and with the 532 nm laser line with 165-170 mW and 45-55 mW of power, respectively. 5 spectra
were collected and averaged for each substrate to demonstrate Raman spectral response allowing
variances to be checked and effective cosmic ray identification/removal.

2.4.1.2 Optimisation of position for dry serum data collection. Serum samples (3 ul) were
pipetted onto an aluminium foil substrate in duplicate and left to dry for 1 hour at room temperature.
A 20x N Plan EPI objective (Leica, USA) was used to take point spectra across the droplet in a ‘snake’
configuration to create a Raman map. Samples were interrogated with 785 nm and 532 nm laser lines
with 65-85 mW and 25-45 mW of power at the sample respectively. The mapping data were then used
to optimise position across dried droplets for HT dry serum data collection.

2.4.1.3 Dryserum Raman data collection Serum samples (3ul) were pipetted onto an aluminium
foil multi-well substrate in duplicate and left to dry for 1 hour at room temperature. Point spectra
were collected across each dried droplet with 5 spectra being taken across the two droplets. Samples
were interrogated with 785 nm and 532 nm laser light with 65-85 mW and 25-45 mW of power
using a 20x N Plan EPI objective (Leica, USA). Total acquisition time for 532 nm and 785 nm was
approximately 10 minutes.

2.4.1.4 Liquid serum Raman data collection. Liquid serum samples were excited with both the
785 nm and 532 nm sources with a 10x dry objective. Spectra were recorded from 200 ulliquid serum
samples in the sample substrate and 5 repeat spectra were collected from a single sample. Samples
were interrogated with approx. 65-85 mW of power from the 532 nm laser and 40 mW from the 785
nm laser. The total time for data collection was approximately 6 mins and 12.5 mins for the 532 nm
and 785 nm laser sources including repeat spectra.

2.4.1.5 Temperature effect on spectral reproducibility. A liquid measurement platform has been
developed for a high throughput environment, incorporating a temperature stabilised plate that
houses a 40-well plate machined from 316L stainless steel. The stainless steel substrate was cho-
sen for its good thermal conductivity, non-corrosive properties and minimal Raman response. The
temperature stabilised liquid platform is used to control the temperature of the serum within the well
plate with an accuracy better than +0.25°C, as measured via thermocouples within the platform.
The effect of temperature stabilisation on spectral reproducibility was evaluated in this work.
Serum spectra were collected without the use of the temperature stabilised platform and compared
to serum spectra taken using the platform. The temperature of the well plate is kept above the dew



point to prevent condensation from forming when in use.

2.5 Data preprocessing

The raw Raman spectral data were subject to a spectral preprocessing routine consisting of wavenum-
ber standardisation, background subtraction using a rolling circle filter algorithm and normalisation
to the peak at 1004 cm~! developed in house.??

2.5.0.1 Spectral normalisation. Spectra were normalised to the peak at 1004 cm~! assigned to

the the aromatic breathing mode of phenylalanine. This peak was chosen as it is a sharp, intense
peak that was often the most intense peak within the serum spectra measured. The peak is used in
literature for biological Raman spectral normalisation because phenylalanine is not very sensitive to
conformational changes of the proteins it resides within or chemical modification.?3?4 Furthermore,
normalisation to this peak produced the high diagnostic discriminatory results when compared to
other commonly used normalisation methods such as vector normalisation. 2>

2.5.0.2 Mapping. Raman map scans were processed into spectral heat map using the Wire 4.1
(Renishaw, UK) mapping interface. Maps were created across dried droplets in the fingerprint region
(610-1720 cm™~!).The inbuilt spectral mapping tool within WIRE was used to create Raman principle
component analysis (PCA) maps. Map spectra were not pre-processed prior to producing the heat
maps.

2.6 Data analysis
Preprocessed data were used for spectral comparisons and for computing the mean and difference
spectra to demonstrate spectral differences and make spectral comparisons.

To highlight spectral variation due to inter-operator variability and the effects of temperature on
the spectra, preprocessed spectra were subject to PCA analysis. PCA is an unsupervised analysis
technique. PCA transforms spectral datasets under a matrix transformation such that the spectral
variances are maximised. The transformed data are set up such that the principle components (PCs) of
the transformation are in rank order of spectral variance. It is then possible to project the component
scores and plot to investigate spectral differences. Loading plots on the PCs were also plotted to
investigate the underlying spectral causes of the variation described by the PCs.

Processed spectra were also subject to partial least squares discriminant analysis (PLS-DA). Briefly,
PLS-DA is a multivariate analysis technique that can be used to investigate causes of differences and
variances within datasets.2° It is based on partial least squares regression (PLS) and can be used on
datasets that have binary groups (e.g. cancer vs control). PLS regression can be used to form a linear
multivariate model between two matrices (X and Y), where in our case X is the spectral dataset and
Y is a set of observable variables. The discriminant analysis or (PLS-DA) is used where Y is known
and a PLS regression model is built between a dataset matrix (X) and a ‘label’ matrix (Y) where the
‘label’ matrix contains numbers that correspond to groups within the dataset e.g. (1 = Cancer, -1 =
Control). By cross validating PLS-DA models classification performance can be measured for a given
dataset in terms of a confusion matrix. Therefore, this technique lends itself well to investigating
the effect of different pre-analytical techniques by allowing the user to both investigate the causes
of variance within a dataset via loadings and PLS-DA scores but also to quantify the result via giving



a numerical performance to measure the magnitude of the changes. All spectra were analysed on
a spectrum-wise basis as the dataset is relatively small.2” The number of latent variables chosen in
the classification model for each was different. The number selected minimised the cross validation
(CV) error. Post CV, sensitivity and specificity for detecting colorectal cancer were calculated from CV
confusion matrices for each technique as follows;

o TN
Specificity = m,
o TP
Sensitivity = —————,

(TP+FN)

where TN is true negatives, TP is true positives, FP is false positives and FN is false negative re-
sults. The calculated sensitivities and specificities were then used as a measure to demonstrate model
performance between methodologies.

3 Results and discussion

When developing HT methodologies for diagnostic serum Raman spectroscopic methods the sub-
strates, measurement positions, treatment of the samples and treatment of the data must be simple
and consistent. To develop the methodologies for dry and liquid HT Raman for CRC detection, op-
timisation was carried out on the measurement substrates, conditions and the way serum samples
were treated before and during measurements as seen in Table 2. The effect of the different optimised
methodologies on diagnostic capability and practicality were then compared against each other con-
sidering the optimal laboratory setting and also in terms of translating the techniques into a clinical
setting.

Table 2 Optimisation and comparative study summary

Optimisation studies
Laser source

785 nm and 532 nm
Glass, polypropylene,
aluminium foil, calcium
flouride

Substrates

Measurement position

(dry) Position across droplet

. Temperature stable
Measurement environ-
ment (liquid) Vs Non-temperature
stabilised
Inter-user variation
(dry and liquid) User 1 vs user 2
Effects on diagnostic capability
HT methods Dry vs Liquid

Freeze-thaw cycles

Dry spectroscopic com-
parison

Liquid spectroscopic
comparison

Fresh vs freeze-thawed
Di ATR-FTIR vs HT lig-
uid Raman

Di ATR-FTIR vs HT dry
Raman




3.1 Development of high-throughput dry serum Raman spectroscopy
3.1.1 Dry excitation wavelength

The spectrometer used during this work is fitted with both 785 nm and 532 nm laser sources. In terms
of spectral responsiveness and demonstrably better signal to noise ratio the 785 nm had a much better
response than the 532 nm spectra. Furthermore, some samples became damaged when interrogated
with the 532 nm laser line. In the interest of translatability and the main aim being for this to be
non-destructive to samples only the 785 nm dry methodology was taken forward for dry spectral
acquisition.

3.1.2 Dry substrate optimisation

A range of substrates were tested for use with the HT dry platform. Figure 1 shows a comparison
between aluminium foil, stainless steel, CaF microscope slide, glass slides and a polypropylene well
plate. The polypropylene slides and the calcium fluoride slide both showed large spectral contri-
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Fig. 1 Comparison of different potential substrates for dry HT serum Raman spectroscopy. Spectra are offset
for clarity.

butions. The calcium fluoride disk had been used previously and cleaned showing that despite the
low expected spectral contribution, calcium fluoride disks can undergo degradation. The glass slides
tested are cheap and are already used commonly in a clinical setting, however, they have a large
spectral response when excited within the NIR region. The aluminium foil and stainless steel slides
showed the lowest spectral contribution when excited with a 785 nm laser.
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Fig. 2 Representative example of raw spectra data from the aluminium foil multi-well substrate (inset).

Aluminium foil previously has been reported as a potential substrate for biofluid analysis with
Raman spectroscopy. 128 However, it can be subject to warping or crumpling effects while a droplet

7



dries onto it. To combat this the aluminium foil substrate in this work was pressed and dimpled into
a multi-well design minimising the warping and crumpling effects. This reduced dry droplet cracking
and allowed HT dry droplet data acquisition with excellent SNR and good spectral reproducibility as
seen in Figure 2. One drawback of using a dry serum RS process is that serum components appear to
segregate during the drying process leaving an inhomogeneous film with inherent spectral variability.
This process can vary across different substrates. Therefore, the region in which spectral measure-
ments were to be taken was optimised using PCA mapping. Dried droplets were mapped over the
fingerprint region (610 cm~'-1720 cm™!). PCA maps were then generated and superimposed onto
white light images of the droplets using a non-mean centred PCA algorithm with the most variable ar-
eas having brighter mapped colours as seen in Figure 3. As expected with a non-centred PCA the first
PCA map shows homogeneity across the sample representing the mean dry spectrum. When investi-
gating the map across PC2 it is clear that there is a darker and therefore less variable region across
the droplet just inside the outer ring. This least variable region was therefore selected as the optimal
region in which to take spectral measurements to reduce spectral variability due to the sample drying
effects.

Fig. 3 Representative white light image of a dried serum droplet exhibiting drying effects (top left), false colour
Raman PCA map over the droplet for PC1 (top right), Raman PCA map over PC2 (bottom left) and map
indicating the optimum sampling region (bottom right).

3.2 Dry platform inter-user variability

For a HT technique to be considered translatable as a clinical diagnostic platform, it must be repeatable
for multiple trained users. The inter user variability of the dry HT technique was tested by having two
experienced users take measurements from the same dried droplet in the same laboratory within the
same hour (to minimise the effects of external laboratory conditions). This was performed on the same
instrument with the same instrument calibrations. Measurements were taken in immediate succession
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i.e. user 1 collected 5 spectra then user 2 collected 5 spectra. Therefore, the only experimental

variability that should be introduced is the difference between the user measurements. Figure 4 shows

the PCA score plot for two users taking 5 individual spectra across the same dried droplet following

the protocol for the positioning as set out in Figure 3. The PC1 vs PC2 plot shows that between the two
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Fig. 4 PC score plot showing PC1 vs PC2 (A) and loading plot (B) for inter-user variability study for the dry
HT platform.

users there is a general separation across PC2 with the spectra from each user grouping together. This
implies that the largest spectral variances are due to inter-user variability. The associated loading plot
for PC1 and PC2 shows that there are spectral variances mostly caused by the 1300 cm~'-1400 cm™!
spectral region. This is associated with a spectral contribution from the aluminium substrate in this
region (Figure 1). Therefore, despite optimisation of the region across a dried droplet in which users
take measurements there are still differences in the substrate spectral contribution. Repeated tests
by the users confirmed that the dried droplet approach leads to variances caused by which operator
was taking the measurements. Therefore, when taking spectral measurements by the dry platform the
user would need to be kept consistent for a given dataset to ensure spectral comparability.

3.3 Development of high-throughput liquid serum Raman spectroscopy

Multi-well HT measurement platforms are used across biological research to allow the analysis of
multiple samples or replicates. Typically for biological applications polypropylene well plates are used.
However, plastic multi well plates tend to have a large spectral contribution due to their structure
which can ‘flood’ the biological spectral information as seen in Figure 5. As aluminium had a low
spectral contribution when testing dry substrates, an aluminium well plate was tested but tarnished
and was subject to surface oxidisation.

To avoid the spectral contribution from a plastic system a 40-well stainless steel substrate was de-
veloped for HT serum RS. The stainless steel well plate allows rapid spectral collection from multiple
liquid samples, offers a low Raman background contribution and, via employing the same protocols
for the cleaning of surgical instruments, offers a re-usable and contaminant-free platform for sam-
ple handling. Figure 6 shows a representative example of raw liquid spectral data collected using
the developed HT platform from 785 nm (a), 532 nm excited serum (b) and the well plate design
(inset). Liquid serum spectra collected using the platform with both 785 nm and 532 nm laser excita-
tion show good SNR, minimal substrate contribution and also good spectral variability within repeat
measurements. The stainless steel design was therefore used a simple, cost effective HT substrate.
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gated with (A) 785 nm laser excitation and (B) 532 n m laser excitation.

3.4 Temperature and sample degradation study
The development of a high throughput liquid platform allows up to 40 liquid samples to be loaded
into the stainless-steel well plate at once and analysed via automated hardware and software protocols
with no user interaction necessary between sample runs. Based on collecting five acquisitions per well,
8 hours is required to analyse the entire well plate. Efforts must be made to keep the liquid samples
stable throughout this 8 hour period in which evaporation effects can lead to spectra deemed as
unreliable from a diagnostic perspective, as is displayed in Figure 7A. Sample temperature stabilisation
is introduced to minimise evaporation and maintain sample volume and aid compositional integrity.
To demonstrate the effectiveness within the HT liquid serum platform, a comparative study of spec-
tra from un-stabilised (variable with room temperature and sampling conditions) and actively cooled
samples taken over an 8 hour period was carried out. With no stabilization in place, a large decrease
in the sample volume was observed with an evaporation rate of approximately 10 ul/hr. Evaporation
is greatly reduced with an actively stabilised and cooled sample. Spectra variability is largely reduced
by the presence of cooling over the course of 8 hours with a maximum and mean spectral standard
deviation a factor of 2.9x and 1.9x smaller than when no cooling present, respectively. This variability
is shown by the comparative standard deviation from the mean processed spectra in Figure 7 A. The
mean spectral standard deviation with no temperature control was found to be 0.0265, compared to
the cooled sample which had a mean spectral standard deviation of 0.0138. This reduction in spectral
variance is further demonstrated via PCA analysis. Figure 7 B is a PC1 vs PC2 score plot of the same
sample taken 8 hours apart in a non-temperature stabilised setting. The PC1 vs PC2 score plot shows
that spectra taken at time 0 were significantly separated along PC1 compared to spectra taken after 8
hours, with PC1 accounting for 86.78% of the overall spectral variance for the non-stabilised spectra.
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Fig. 6 Example raw spectral data taken from the stainless steel HT platform showing good SNR rand spectral
repeatability with the 785 nm excitation (A) and the 532 nm excitation (B).

When compared to PCA analysis of spectra taken on the temperature stabilized platform (Figure 7
C) the overall variance of the temperature stabilised spectra is lower and the spectra show less over-
all variance. This is further shown when directly comparing the overall variance along PC1 for the
non-temperature stabilised and the cooled spectra (Figure 7 D), where the overall spectral variance in
the spectra taken in the cooled platform is almost half that of the temperature non-stabilised spectra.
Although there is still separation in the PC1 scores of the sample when cooling is present, this is an
amount of separation also commonly seen within spectra-spectra variability.

3.5 Inter-operator variability - liquid

To demonstrate the minimisation in the inter-operator variability when using the liquid HT platform,
spectral acquisition from a serum sample within the same well on the same day with equal volume
of sample was repeated by two trained users. Figure 8 shows PC1 vs PC2 score plot and associated
loadings on PC1 and PC2 for 5 repeat measurements from each user. The PC scatter plots show no
evident spectral grouping between the users contributing to the spectra. The PC loading plots show
that the main spectral variance (46.52%) is attributed to noise within the spectra as no distinguish-
able spectral features can be identified. Furthermore, compared to the inter-user variability of the
dry platform (Figure 4) the liquid platform shows an overall reduction in spectral variance. It can
therefore be concluded that using the HT liquid platform the spectra are not affected by the trained
system user so the liquid platform would lend itself well to translating into a clinical setting with more
than one trained user.
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Fig. 8 PC score plot (A) and loading plot (B) for inter-user variability study for the liquid HT platform.

3.6 Direct comparison of the diagnostic capability of the HT Raman serum platforms
To evaluate the potential of the HT platforms developed in this work a pilot dataset of 60 patients was
used to evaluate the diagnostic capability of the methods. Spectra were acquired from fresh (same
day of blood draw) serum samples with; 30 patients with colorectal cancer determined by positive
colonoscopies, and 30 patients with negative colonoscopies for colorectal cancer. Figure 9 shows the
mean, standard deviation and difference spectra produced for the pilot patient dataset from the HT
dry serum platform and the HT liquid temperature stabilised platform. The mean difference spec-
tra from all methods show differences in peaks at 1147 cm~! and 1518cm™! tentatively assigned to
carotenoids with control patients showing higher levels. > Within the dry and liquid 785 nm spectra
control intensities are higher in the C/C stretching bands (1447 cm™'), the shoulder of the pheny-
lalanine band and higher peaks attributed to the Amide I region 1650-1660 cm~! and the Amide III
region between 1208 cm~! and 1342 cm~'.1829:30 The cancer spectra show higher levels in bands
at 759 cm~! and 853 cm™!, attributed to tyrosine as well differences at 1127 cm~! attributed to
phospholipids and lipoproteins.

PLS-DA discriminatory models were produced for data from the dry and the liquid HT serum
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Fig. 9 Standard deviation from the mean spectra for control vs cancer patients with spectral difference plots
for spectra taken using the dry platform (A), the liquid 785 nm platform (B) and the liquid 532 nm platform (C).

Raman platforms. PLS-DA model parameters were optimised according to minimising the cross-
validation error within the models. All PLS-DA models were cross validated using k-fold cross val-
idation with 5 folds. Receiver operating curves (ROC) were also generated from the predicted values
from the 5-fold cross validation and the area under the curve (AUC) plotted for both the training set
and the cross validated models.

Figure 10A shows the cross-validated prediction scores against sample number for the 785 nm
dry platform. The prediction shows a good separation between the PLS-DA scores for the cancer and
the control patients. The loading plot for the 785 nm dry data shows that the IV1 shows spectral
differences that match the difference plots generated in Figure 9A,B. Figure 10D shows that the cross-
validated prediction scores for the liquid model is still well separated between the groups, but not
as well as the dry data. The general trend and peak positions of the differences shown in the liquid
loading on LV1 and the difference plot is also comparable. The HT liquid method with 532 nm
excitation also shows good cross-validated separation but not quite as high as the 785 nm excitation
data. However, the loading plot for IV1 for the 532 nm data matches almost exactly the difference plot
shown in Figure 9C. The area under the curve (AUC) for all of the cross validated PLS-DA models was
higher than 0.8 indicating that all three techniques have potential to be considered ‘good’ learners.3!
However, as reflected in the predictions vs samples plots the 785 nm dry data had the highest AUC at
0.8834. Following the calculation of the cross validated PLS-DA models, sensitivities and specificities
for the techniques to identify colorectal cancer within the serum samples was calculated for each HT
Raman platform. Table 3 shows a comparison of the HT platforms in terms of the calculated CV
sensitivities, specificities, analysis times and the effects of inter-operator variability.

With these patient samples, the dry 785 nm methodology yields the most effective diagnostic
results with the highest sensitivity, specificity and AUC. Therefore, within a research laboratory with
one user, this method may be considered optimal. However, when extended to considering aspects
of translation the dry methodology exhibited inter-user spectral variability which would potentially
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Table 3 Comparison between calculated sensitivities, specificities, susceptibility to user variability and also
total sample measurement time for one sample (including pipetting, drying, etc)

User Total

Sensitivitgpecifici . .
%) tﬁ(% %) Yyari- time
able? (mins)
785 nm dry 83 83 Yes 80
785 nm Liquid 77 81 No 22.5
532 nm liquid 77 78 No 16

cause a large variation in diagnostic results.

The liquid serum platform showed higher specificity with 785 nm excitation than with 532 nm
excitation. The sensitivities were equivalent for 785 nm and 532 nm excitation. This is likely to be
due to the spectra sharing some common spectral bands such as the phenylalanine and the carotenoid
associated bands as seen in Figure 6. Figure 10 parts B,E and H show the loadings associated to the
scores for each PLS-DA model. The bands shared within the spectra are also common in the PLS-DA
loadings associated to the spectral discrimination. The PLS-DA models constructed within this work
highlight the effective reproducible processes in the measurement platform and analysis routines.
This enables high levels of discrimination at both wavelengths, even though the spectra themselves
are different.

Finally, despite the liquid methodologies having a slightly lower sensitivity and specificity than the
dry methods they are not affected by inter-user variability. Moreover the overall analysis time for the
liquid methods is also quicker as there is no need to wait for the samples to dry.

3.7 The effect of freeze-thawing samples on diagnostic capability of HIF-Raman methods
Previous work has shown that in vibrational spectroscopic studies the preparation of a sample can
affect spectra. For example, Lovergne et al showed that freeze-thaw cycles affect spectral variability
in plasma samples within FTIR studies.!” When using clinical samples, some sample sources may
sometimes be available fresh and sometimes available after storage (freezing). To investigate the
effect that freezing samples has on diagnostic capability serum samples were compared for both the
dry and liquid HT measurement platforms for fresh samples and samples that had undergone a freeze-
thaw cycle. One aliquot of each patient sample was used on day of collection for immediate Raman
analysis (results presented above) and another was frozen at -80°C. After one month of storage, frozen
samples were thawed at room temperature and analysed. Data from the samples that had undergone
a freeze thaw cycle were subject to PLS-DA analysis. Diagnostic models were then calculated , cross
validated and compared to the models calculated for fresh serum samples. Table 4 demonstrates that
the dry samples are affected more significantly by the freeze-thaw process and the liquid samples
maintain a similarly high sensitivity, specificity and AUC as the fresh samples in Table 3. These results
demonstrate a strong motivation for application of the method to a liquid sample on the basis of both
reproducibility and sample handling flexibility.

4 Conclusions

HT Raman spectroscopy of serum to triage colorectal cancer referrals to colonoscopy offers a poten-
tially cost saving, low risk clinical tool that could aid more rapid diagnosis of colorectal cancer. In
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Table 4 Sensitivities and specificities for samples that had been freeze-thawed before measurement and
comparison to fresh samples

Sensitivitgpecificity
Sensitivitﬁpeciﬁcit}?hange change
%) %) Vs Vs
fresh fresh
(%) (%)

785 nm dry 72 78 -11 -5
785 nm Liquid 79 77 +2 -4
532 nm liquid 77 77 0 +1

this study the development of HT platforms for serum RS for the triage of colorectal referrals has
been presented which has been previously presented as a critical research gap in colorectal cancer.3?
Aluminium foil proved to be a cheap and effective substrate for drying serum samples and collecting
spectra, when coupled to fresh serum samples the aluminium substrate proved the most diagnostically
effective with a sensitivity and specificity for colorectal cancer of 83% and 83%. Furthermore, in terms
of analysis time the HT platform takes just 10 mins per sample excluding drying time. However, when
considering translatability the dry platform did not perform as well when samples were analysed via
different users or when samples had been frozen prior to analysis.

To combat limitations with the dry HT platform, a stainless steel well plate with a temperature
stabilisation stage has also been developed and optimised for liquid serum spectral acquisition. The
stainless-steel well plate design shows minimal spectral contributions and allows automated sample
collection for up to 40 patients per sample run. Furthermore, the platform is re-usable when subject
to cleaning protocols consistent with surgical tools.

Stabilising the temperature of the liquid platform was shown to reduce the spectral variance and
minimised evaporation effects allowing more reproducible data acquisition. The liquid HT platform
was also compatible with more than one wavelength and showed less susceptibility to inter-user
variation between spectra and was not as affected as the dry protocol by the freezing of samples. The
maximum sensitivity and specificity achieved with the HT liquid platform was with the 785 nm laser
using fresh samples at 77% and 81% respectively. The 532 nm excitation had lower discriminatory
values than the 785 nm models but it had the quickest overall sampling time.

It is appreciated that one limitation of the work presented here is the lack of testing of diagnostic
models with an independent testing set. However, the diagnostic values presented demonstrate the
efficacy of the HT platforms developed and are encouraging for future studies. If HT serum RS
is to be translated as a triage tool for colorectal referrals, diagnostic capability of the techniques,
further studies with larger clinically relevant cohorts using more robust diagnostic algorithms and
independent testing of patient cohorts will need to be carried out. Future work will include the
evaluation of the HT diagnostic platforms in conjunction with machine learning based techniques in a
large patient cohort. Furthermore, the effects of cancer stage, patient co-morbidities, medications and
the limit of detection for serum Raman spectroscopy will be considered as well as the health economic
considerations of HT serum RS as a triage tool for colorectal cancer referrals.

The new gains we have demonstrated in this study will continue to be advanced to establish early
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and effective diagnosis of colorectal cancer for patient benefit. The methodology is also being applied
to validate Raman spectroscopy as key clinical tool for liquid serum biopsies.
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