275 research outputs found

    New Hypothesis for Cause of Epidemic among Native Americans, New England, 1616–1619

    Get PDF
    This epidemic may have been leptospirosis complicated by Weil syndrome

    Transition from no-ELM response to pellet ELM triggering during pedestal build-up—insights from extended MHD simulations

    Get PDF
    Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed

    Optical Multicolor WBVR-Observations of the X-Ray Star V1341 Cyg = Cyg X-2 in 1986-1992

    Full text link
    We present the results of WBVRWBVR observations of the low-mass X-ray binary V1341 Cyg=Cyg\textrm{Cyg} = \textrm{Cyg} X--2. Our observations include a total of 2375 individual measurements in four bands on 478 nights in 1986-1992. We tied the comparison and check stars used for the binary to the WBVRWBVR catalog using their JHKJHK magnitudes. The uncertainty of this procedure was 3% in the BB and VV bands and 8%-10% for the WW and RR bands. In quiescence, the amplitude of the periodic component in the binary's BB brightness variations is within 0.265m0.278m0.265^{m}{-}0.278^{m} (0.290m0.320m0.290^{m}{-}0.320^{m} in WW); this is due to the ellipsoidal shape of the optical component, which is distorted with gravitational forces from the X-ray component. Some of the system's active states (long flares) may be due to instabilities in the accretion disk, and possibly to instabilities of gas flows and other accretion structures. The binary possesses a low-luminosity accretion disk. The light curves reveal no indications of an eclipse near the phases of the upper and lower conjunctions in quiescence or in active states during the observed intervals. We conclude that the optical star in the close binary V1341 Cyg=Cyg\textrm{Cyg} = \textrm{Cyg} X-2 is a red giant rather than a blue straggler. We studied the long-term variability of the binary during the seven years covered by our observations. The optical observations presented in this study are compared to X-ray data from the Ginga observatory for the same time intervals.Comment: 35 pages, 8 figure

    Probing non-linear MHD stability of the EDA H-mode in ASDEX Upgrade

    Full text link
    Regimes of operation in tokamaks that are devoid of large ELMs have to be better understood to extrapolate their applicability to reactor-relevant devices. This paper describes non-linear extended MHD simulations that use an experimental equilibrium from an EDA H-mode in ASDEX Upgrade. Linear ideal MHD analysis indicates that the operational point lies slightly inside of the stable region. The non-linear simulations with the visco-resistive extended MHD code, JOREK, sustain non-axisymmetric perturbations that are linearly most unstable with toroidal mode numbers of n = \{6 \dots 9\}, but non-linearly higher and lower n become driven and the low-n become dominant. The poloidal mode velocity during the linear phase is found to correspond to the expected velocity for resistive ballooning modes. The perturbations that exist in the simulations have somewhat smaller poloidal wavenumbers (k_{\theta} \sim 0.1 to 0.5 cm^{-1} ) than the experimental expectations for the quasi-coherent mode in EDA, and cause non-negligible transport in both the heat and particle channels. In the transition from linear to non-linear phase, the mode frequency chirps down from approximately 35 kHz to 13 kHz, which corresponds approximately to the lower end of frequencies that are typically observed in EDA H-modes in ASDEX Upgrade
    corecore