127 research outputs found

    C2PA, a new protein expressed during mouse spermatogenesis

    Get PDF
    AbstractC2PA is a novel protein that contains a C2 membrane binding domain, a PDZ protein/protein interaction domain, and an ATP/GTP binding domain. C2PA is expressed during embryogenesis from 8.5 days post-coitum (dpc) until birth. After birth, C2PA expression is mainly observed in the post-natal and adult testis. During spermatogenesis, C2PA transcripts are specifically observed in the spermatocytes, whereas spermatogonia and spermatids are negative. Taken together, these results suggest that C2PA might be involved in cell signaling pathways occurring during spermatogenesis

    Tumor Necrosis Factor Receptor-Associated Factor 4 Is a Dynamic Tight Junction-Related Shuttle Protein Involved in Epithelium Homeostasis

    Get PDF
    BACKGROUND: Despite numerous in vivo evidences that Tumor Necrosis Factor Receptor-Associated Factor 4 (TRAF4) plays a key biological function, how it works at the cellular and molecular level remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we show using immunofluorescence and immuohistochemistry that TRAF4 is a novel player at the tight junctions (TJs). TRAF4 is connected to assembled TJs in confluent epithelial cells, but accumulates in the cytoplasm and/or nucleus when TJs are open in isolated cells or EGTA-treated confluent cells. In vivo, TRAF4 is consistently found at TJs in normal human mammary epithelia as well as in well-differentiated in situ carcinomas. In contrast, TRAF4 is never localized at the plasma membrane of poorly-differentiated invasive carcinomas devoid of correct TJs, but is observed in the cytoplasm and/or nucleus of the cancer cells. Moreover, TRAF4 TJ subcellular localization is remarkably dynamic. Fluorescence recovery after photobleaching (FRAP) experiments show that TRAF4 is highly mobile and shuttles between TJs and the cytoplasm. Finally, we show that intracellular TRAF4 potentiates ERK1/2 phosphorylation in proliferating HeLa cells, an epithelial cell line known to be devoid of TJs. CONCLUSIONS/SIGNIFICANCE: Collectively, our data strongly support the new concept of TJs as a dynamic structure. Moreover, our results implicate TRAF4 in one of the emerging TJ-dependent signaling pathways that responds to cell polarity by regulating the cell proliferation/differentiation balance, and subsequently epithelium homeostasis. Drastic phenotypes or lethality in TRAF4-deficient mice and drosophila strongly argue in favor of such a function

    Ghrelin Gene Deletion Alters Pulsatile Growth Hormone Secretion in Adult Female Mice

    Get PDF
    Using preproghrelin-deficient mice (Ghrl-/-), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult Ghrl-/- and Ghrl+/+ male and female mice. We also assessed GH release from pituitary explants and hypothalamic growth hormonereleasing hormone (GHRH) expression and immunoreactivity. Body weight and body fat mass, linear growth, spontaneous food intake and food intake following a 48-h fast, GH pituitary contents and GH release from pituitary explants ex vivo, fasting glucose and glucose tolerance were not different among adult Ghrl-/- and Ghrl+/+ male or female mice. In vivo, pulsatile GH secretion was decreased, while approximate entropy, that quantified orderliness of secretion, was increased in adult Ghrl-/- females only, defining more irregular GH pattern. The number of neurons immunoreactive for GHRH visualized in the hypothalamic arcuate nucleus was increased in adult Ghrl-/- females, as compared to Ghrl+/+ females, whereas the expression of GHRH was not different amongst groups. Thus, these results point to sex-specific effects of preproghrelin gene deletion on pulsatile GH secretion, but not feeding, growth or metabolic parameters, in adult mice.Fil: Hassouna, Rim. Université Paris Cité; Francia. Universite de Bordeaux; Francia. Inserm; FranciaFil: Fernandez, Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Lebrun, Nicolas. Université Paris Cité; FranciaFil: Fiquet, Oriane. Universite de Bordeaux; Francia. Université Paris Cité; Francia. Inserm; FranciaFil: Roelfsema, Ferdinand. Leiden University Medical Center; Países BajosFil: Labarthe, Alexandra. Université Paris Cité; Francia. Universite de Bordeaux; Francia. Inserm; FranciaFil: Zizzari, Philippe. Universite de Bordeaux; Francia. Université Paris Cité; Francia. Inserm; FranciaFil: Tomasetto, Catherine. Universite de Bordeaux; Francia. Université Paris Cité; Francia. Inserm; FranciaFil: Epelbaum, Jacques. Universite de Bordeaux; Francia. Université Paris Cité; Francia. Inserm; FranciaFil: Viltart, Odile. Universite de Bordeaux; Francia. Université Paris Cité; Francia. Inserm; FranciaFil: Chauveau, Christophe. Université Du Littoral Côte D‘opale; FranciaFil: Perello, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Tolle, Virginie. Université Paris Cité; Franci

    TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration

    Get PDF
    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration

    LIM and SH3 Protein -1 Modulates CXCR2-Mediated Cell Migration

    Get PDF
    BACKGROUND: The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. CONCLUSIONS/SIGNIFICANCE: We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis. Thus, LASP-1 may serve as a new link coordinating the flow of information between chemokine receptors and nascent focal adhesions, especially at the leading edge. Thus the association between the chemokine receptors and LASP-1 suggests to the presence of a CXC chemokine receptor-LASP-1 pro-migratory module in cells governing the cell migration

    Identification d'une famille de proteines impliquees dans la biologie gastro-intestinale

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Rôle du gène Metastatic Lymph Node 51 dans le métabolisme des ARN messagers

    No full text
    Résumé français : notice = 7Ko MAXIMUM : résumé trop long empêche la validation : longueur = 1700 caractéresRésumé anglais : idemSTRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    The potential of ghrelin as a prokinetic.

    No full text
    International audienceGhrelin is a 28 amino-acid peptide discovered in 1999. It is synthesized mainly in endocrine cells of the gastric mucosa and secreted into the blood. Physiological contributions of the peptide in human include probably regulation of growth hormone and of appetite. Ghrelin can also influence the gastrointestinal system, mostly by stimulating the contractility of the proximal gut. Whether ghrelin is a significant regulator of the digestive physiology remains to be shown. Whether ghrelin agonist agents could be useful prokinetic drugs in human medicine is currently under exploration

    Etude fonctionnelle de la protéine Metastatic lymph node 51 dans le métabolisme des ARN messagers

    No full text
    La protéine MLN51, surexprimée dans environ 30% des cancers du sein, est un facteur clé du métabolisme des ARNm, en tant que membre du complexe de jonction des exons (EJC). Ce graffiti moléculaire est un régulateur essentiel de l expression génique de par son implication dans l épissage, l export, la traduction, la stabilité et la dégradation des ARNm. A l échelle structurale, l EJC est organisé autour d un coeur protéique avec l hélicase eIF4A3, MLN51 et l hétérodimère Magoh/Y14. Ce tétramère sert de plateforme d ancrage à d autres facteurs périphériques. Les mécanismes de recrutement du coeur EJC sur l ARNm ont été élucidés par des approches biochimiques. Dans ce contexte, nous avons initié un travail original destiné à mettre en évidence la localisation cellulaire de l assemblage du coeur EJC in vivo. L utilisation de techniques d imagerie photonique et électronique a permis d établir un lien véritable entre la localisation du coeur EJC et l architecture nucléaire. Nous avons montré que la plupart des facteurs EJC sont localisés et interagissent à la périphérie des speckles nucléaires, lieux de stockage des facteurs d épissage. Ces régions discrètes nucléaires ont été appelées perispeckles et sont des entités distinctes des speckles. De manière intéressante, la localisation des protéines coeur coïncide avec celle des ARNm dans les perispeckles et est spatialement reliée aux sites transcriptionnels. Ces données démontrent que l assemblage du coeur EJC a lieu dans le compartiment nucléaire et définissent le perispeckle comme un territoire intermédiaire entre les speckles nucléaires et sites de transcription où s opèrent des évènements post-transcriptionnels fondamentaux.The MLN51 protein, overexpressed in around 30% of breast cancers, is a key factor for mRNA metabolism, as a member of the Exon Junction Complex (EJC). The EJC marks the splicing history of an mRNA and influences many stages of its subsequent metabolism: splicing, dynamic cytoplasmic export, efficient and localized translation, quality-control and stability. Structurally, the EJC is organized around a core complex that is formed by four proteins (eIF4A3, MLN51, Magoh, Y14). The core complex serves as a binding platform for more than a dozen peripheral factors. The EJC is not a pre-assembled complex; however, its assembly mode is well described in vitro using recombinant proteins and splicing extracts. Nevertheless, where this complex assembles in vivo was a matter of debate. By using light and electron microscopy approaches, we established an original link between the cellular distribution of the EJC core factors and the nuclear architecture. The core and most of the peripheral EJC factors are colocalized and interact together in discrete regions of the nucleus, located at the periphery of nuclear speckles. This doughnut-shaped region appears to be a novel nuclear territory that we termed the perispeckle . This territory is distinct from nuclear speckles; it contains nascent mRNAs and it is close to active transcription sites. Overall, this study supports a model in which the deposition of the EJC core takes place in the nucleus, and that assembled EJC core factors concentrate in discrete subnuclear territories termed perispeckles. These regions contribute to the compartmentalization of the nucleus as an active domain implicated in mRNP packaging.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF
    • …
    corecore