14 research outputs found

    Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells

    No full text
    One of the most important challenges that cardiomyocytes experience is an increase in the levels of reactive oxygen species (ROS), i.e., during ischemia, reperfusion as well as in the failing myocardium. HOX-1 has been found to protect cells and tissues against oxidative damage; therefore, we decided to study the signalling cascades involved in its transcriptional regulation. HOX-1 mRNA levels were found to be maximally induced after 6h of treatment with 200 mu M H2O2 and remained elevated for at least 24h. Inhibition of JNKs, p38-MAPK and MSK1 pathways, by pharmacological inhibitors, reduced HOX-1 mRNA levels in H2O2-treated H9c2 cells. In parallel, we observed that all three subfamilies of the mitogen-activated protein kinases (MAPKs) attained their maximal phosphorylation levels at 5-15min of H2O2 treatment, with mitogen- and stress-activated-protein kinase 1 (MSK1) also being maximally phosphorylated at 15 min. H2O2-induced MSK1 phosphorylation was completely abrogated in the presence of the selective p38-MAPK inhibitor SB203580. In an effort to define possible substrates of MSK1, we found that ATF2 as well as cJun phosphorylation were equally induced after 30min and 60min, respectively, a response inhibited by SP600125 (JNKs inhibitor) and H89 (MSK1 inhibitor), indicating the involvement of these kinases in the observed response. This finding was further substantiated with the detection of a potential signalling complex composed of either p-MSK1 and p-cJun or p-MSK1 and p-ATF2 (co-immunoprecipitation). ATF2 and cJun are known AP1 components. Given the presence of an AP-1 site in HOX-1 promoter region, the activity of AP1 transcription factor was examined. Electrophoretic mobility shift assays performed showed a maximal upregulation of AP1 binding activity after 60min of H2O2 treatment, which was significantly inhibited by SP600125 and H89. Our results show for the first time the potential role of JNKs, p38-MAPK and MSK1 in the mechanism of transducing the oxidative stress-signal to HOX-1, possibly promoting cell survival and preserving homeostasis. (c) 2006 Elsevier Inc. All rights reserved

    Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38-MAPK and calcium signalling pathways in H9c2 cells

    No full text
    We investigated the response of alpha B-crystallin to oxidative stress and calpain inhibition in an attempt to elucidate the signalling pathways mediating its phosphorylation. Given the high expression levels of alpha B-crystallin in cardiac muscle one can evaluate the significance of its participation in preservation of homeostasis under adverse conditions. H9c2 cardiac myoblasts were used as our experimental model since their response reflects the signal transduction pathways activated by Stress conditions in the myocardium. Thus, in H9c2 cells treated with H2O2 the mechanism regulating alpha B-crystallin phosphorylation was found to involve p38-MAPK/MSKI as well as intracellular free calcium levels. Our immunocytochemical experiments demonstrated phosphorylated A-crystallin to be co-localized with tubulin, potentially preserving cytoskeletal architecture under these interventions. In H9c2 cells treated with calpain inhibitors (ALLN, ALLM) alpha B-crystallin exhibited a p38-MAPK- and [Ca2+](i)-dependent phosphorylation pattern since the latter was ablated in the presence of the selective p38-MAPK inhibitor SB203580 and calcium chelator BAPTA-AM. Calpain activity repression ultimately led to apoptosis confirmed by PARP fragmentation and chromatin condensation. However, the apoptotic pathway activated by ALLM and ALLN differed, underlying the diverse transduction mechanisms stimulated. In addition to this, an anti-apoptotic role for phospho-alpha B-crystallin was verified by confirmation of its interaction with pro-caspase 3, hindering its cleavage and subsequent activation. Collectively, our findings underline aB-crystallin crucial role as a participant of cardiac cells early response to stressful stimuli compromising their survival. (c) 2008 Elsevier Inc. All rights reserved

    Severe Hyperosmotic Stress Issues an ER Stress-Mediated “Death Sentence” in H9c2 Cells, with p38-MAPK and Autophagy “Coming to the Rescue”

    No full text
    With several cardiovascular pathologies associated with osmotic perturbations, researchers are in pursuit of identifying the signaling sensors, mediators and effectors involved, aiming at formulating novel diagnostic and therapeutic strategies. In the present study, H9c2 cells were treated with 0.5 M sorbitol to elicit hyperosmotic stress. Immunoblotting as well as cell viability analyses revealed the simultaneous but independent triggering of multiple signaling pathways. In particular, our findings demonstrated the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) and upregulation of the immunoglobulin heavy-chain-binding protein (BiP) expression, indicating the onset of the Integrated Stress Response (IRS) and endoplasmic reticulum stress (ERS), respectively. In addition, autophagy was also induced, evidenced by the enhancement of Beclin-1 protein expression and of AMP-dependent kinase (AMPK) and Raptor phosphorylation levels. The involvement of a Na+/H+ exchanger-1 (NHE-1) as well as NADPH oxidase (Nox) in 0.5 M sorbitol-induced eIF2α phosphorylation was also indicated. Of note, while inhibition of ERS partially alleviated the detrimental effect of 0.5 M sorbitol on H9c2 cellular viability, attenuation of p38-MAPK activity and late phase autophagy further mitigated it. Deciphering the mode of these pathways’ potential interactions and of their complications may contribute to the quest for effective clinical interventions against associated cardiovascular diseases
    corecore