47 research outputs found

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Genetic Selection of Low Fertile Onchocerca volvulus by Ivermectin Treatment

    Get PDF
    Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug and evidence of drug resistance. Drug resistance has a genetic basis. In this study, genetic changes in β-tubulin, a gene associated with ivermectin resistance in nematodes, were seen in parasites obtained from the patients exposed to repeated ivermectin treatment compared with parasites obtained from the same patients before any exposure to ivermectin. Furthermore, the extent of the genetic changes was dependent on the level of ivermectin treatment exposure. This genetic selection was associated with a lower reproductive rate in the female parasites. The data indicates that this genetic selection is for a population of O. volvulus that is more tolerant to ivermectin. This selection could have implications for the development of ivermectin resistance in O. volvulus and for the ongoing onchocerciasis control programmes. Monitoring for the possible development and spread of ivermectin resistance, as part of the control programmes, should be implemented so that any foci of resistant parasites can be treated by alternative control measures

    Effects of ivermectin on Onchocerca volvulus adult worms

    No full text
    Ivermectin (IVM) is the only safe drug for mass-treatment of onchocerciasis. IVM-resistance has been reported in gastrointestinal nematode parasites of animals. A reduction in response to IVM in Onchocerca volvulus could have significant consequences for the onchocerciasis control programs. Over the last few years, studies have reported genetic selection or reduced responses to IVM in some O. volvulus populations. The risk of a recrudescence of the disease was recently reported with the emergence of resistant adult parasite population in Ghana. It is important to understand the effects of IVM on O. volvulus populations to be able to identify genetic markers to follow IVM selection in the field. In this study, O. volvulus samples were derived from a clinical trial in Cameroon, in which patients were sampled before, and following three years (1994-1997) of IVM treatments. There were four treatment groups: 150mug/kg (1xp.a. or 4xp.a.) and 800mug/kg (1xp.a. or 4xp.a.). DNA from macrofilariae was genotyped for beta-tubulin and P-glycoprotein-like protein (PLP) gene, as well as two control genes and other loci. Reproductive organs of female worms were analyzed by microscopy. A correlation was established between the reproductive status of the female worms and beta-tubulin genotype with the beta-tubulin heterozygous female worms being less fertile than the homozygous female worms. This disadvantage in fertility seemed to disappear after repeated exposure with IVM. We have found evidence that repeated IVM treatment selects for specific alleles of beta-tubulin and PLP. We observed that IVM selection pressure was higher in the female worms than in the male worms. Additionally, loss of polymorphism and selection pressure were higher following thirteen three-monthly doses of IVM compared to annual doses of IVM. Moreover, we found evidence of excess of homozygosity in O. volvulus population, that may be caused by non-random mating and/or subdivision population, which may have implication for the control program. PLP and beta-tubulin genes appear to be promising DNA markers for field use to follow IVM selection. In this perspective, alternative control measures could be considered locally in regions where gene selection is apparent, reducing the likelihood that IVM resistance would develop further and spread

    Polymorphism in ABC transporter genes of Dirofilaria immitis

    No full text
    Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML) endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC) transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR) by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS) and four loss of efficacy (LOE) pooled populations were used for single nucleotide polymorphism (SNP) genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. Keywords: Dirofilaria immitis, Heartworm, ABC transporter, Single nucleotide polymorphism, P-glycoprotei

    Genetic polymorphism in Dirofilaria immitis

    No full text
    a b s t r a c t Dirofilaria immitis is the causative agent of heartworm disease. Reports of macrocyclic lactone inefficacy prompted an investigation of genetic polymorphism in D. immitis. Currently, there is a lack of genetic information for this parasite. Information on baseline levels of genetic heterogeneity in the dog heartworm would have important implications for the possible development of macrocyclic lactone resistance in D. immitis. Genetic variability was investigated to assess the extent of genetic polymorphism in D. immitis populations from the USA (field and laboratory samples) and Japan (field samples). Single nucleotide polymorphisms (SNPs) were investigated in a full-length ␤-tubulin gene and segments of genes encoding heat shock protein 60 (Hsp60), a P-glycoprotein (Pgp), sarco-endoplasmic reticulum Ca 2+ ATPase (Serca) and phosphofructokinase (PFK). Significant differences in SNP frequencies were found in all genes except PFK. A combined genotype built from two SNPs from ␤-tubulin, Hsp60, Pgp and Serca was analyzed in the US lab, US field and Japan field samples. Some combined genotypes were unique to each sample group while others were shared between groups. F coefficients calculated for 15 SNPs from ␤-tubulin, Hsp60, Pgp and Serca were not in equilibrium. Differences in F coefficients were observed between the groups. D. immitis was found to be genetically heterogeneous. This genetic heterogeneity has implication for the development of genetically selected strains of the parasite

    ABC-B transporter genes in Dirofilaria immitis

    Get PDF
    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite

    Dirofilaria immitis JYD-34 isolate: whole genome analysis

    No full text
    Abstract Background Macrocyclic lactone (ML) anthelmintics are used for chemoprophylaxis for heartworm infection in dogs and cats. Cases of dogs becoming infected with heartworms, despite apparent compliance to recommended chemoprophylaxis with approved preventives, has led to such cases being considered as suspected lack of efficacy (LOE). Recently, microfilariae collected from a small number of LOE isolates were used as a source of infection of new host dogs and confirmed to have reduced susceptibility to ML in controlled efficacy studies using L3 challenge in dogs. A specific Dirofilaria immitis laboratory isolate named JYD-34 has also been confirmed to have less than 100% susceptibility to ML-based preventives. For preventive claims against heartworm disease, evidence of 100% efficacy is required by FDA-CVM. It was therefore of interest to determine whether JYD-34 has a genetic profile similar to other documented LOE and confirmed reduced susceptibility isolates or has a genetic profile similar to known ML-susceptible isolates. Methods In this study, the 90Mbp whole genome of the JYD-34 strain was sequenced. This genome was compared using bioinformatics tools to pooled whole genomes of four well-characterized susceptible D. immitis populations, one susceptible Missouri laboratory isolate, as well as the pooled whole genomes of four LOE D. immitis populations. Fixation indexes (FST), which allow the genetic structure of each population (isolate) to be compared at the level of single nucleotide polymorphisms (SNP) across the genome, have been calculated. Forty-one previously reported SNP, that appeared to differentiate between susceptible and LOE and confirmed reduced susceptibility isolates, were also investigated in the JYD-34 isolate. Results The FST analysis, and the analysis of the 41 SNP that appeared to differentiate reduced susceptibility from fully susceptible isolates, confirmed that the JYD-34 isolate has a genome similar to previously investigated LOE isolates, and isolates confirmed to have reduced susceptibility, and to be dissimilar to the susceptible isolates. Conclusions These results provide additional evidence for the link between genotype and the reduced susceptibility phenotype observed in such isolates as JYD-34. Further work on other isolates showing reduced susceptibility to ML is required to demonstrate the value of genetic analysis in predicting the response to ML chemoprophylaxis. The authors suggest that genetic analysis may be useful in helping to interpret the results of in vivo efficacy testing of ML heartworm preventives against D. immitis isolates

    Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design

    Get PDF
    Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML) class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE) populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP) sites (1508 intronic and 126 exonic) in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes

    Clinical validation of molecular markers of macrocyclic lactone resistance in Dirofilaria immitis

    No full text
    Prophylaxis with macrocyclic lactone (ML) endectocides is the primary strategy for heartworm control. Recent evidence has confirmed that ML-resistant Dirofilaria immitis isolates have evolved. Comparison of genomes of ML-resistant isolates show they are genetically distinct from wild-type populations. Previously, we identified single nucleotide polymorphisms (SNPs) that are correlated with phenotypic ML resistance. Since reliable in vitro assays are not available to detect ML resistance in L3 or microfilarial stages, the failure to reduce microfilaraemia in infected dogs treated with an ML has been proposed as a surrogate clinical assay for this purpose. The goal of our study was to validate the genotype-phenotype correlation between SNPs associated with ML resistance and failure to reduce microfilaraemia following ML treatment and to identify a minimal number of SNPs that could be used to confirm ML resistance. In this study, 29 participating veterinary clinics received a total of 148 kits containing supplies for blood collection, dosing and prepaid shipping. Patients recruited after a diagnosis of heartworm infection were treated with a single standard dose of Advantage Multi® and a blood sample taken pre- and approximately 2–4 weeks post-treatment. Each sample was processed by performing a modified Knott's Test followed by isolation of microfilariae, genomic DNA extraction and MiSeq sequencing of regions encompassing 10 SNP sites highly correlated with ML resistance. We observed significant correlation of SNP loci frequencies with the ML microfilaricidal response phenotype. Although all predictive SNP combination models performed well, a 2-SNP model was superior to other models tested. The predictive ability of these markers for ML-resistant heartworms should be further evaluated in clinical and epidemiological contexts

    Genetic profiles of ten Dirofilaria immitis isolates susceptible or resistant to macrocyclic lactone heartworm preventives

    No full text
    Abstract Background For dogs and cats, chemoprophylaxis with macrocyclic lactone (ML) preventives for heartworm disease is widely used in the United States and other countries. Since 2005, cases of loss of efficacy (LOE) of heartworm preventives have been reported in the U.S. More recently, ML-resistant D. immitis isolates were confirmed. Previous work identified 42 genetic markers that could predict ML response in individual samples. For field surveillance, it would be more appropriate to work on microfilarial pools from individual dogs with a smaller subset of genetic markers. Methods MiSeq technology was used to identify allele frequencies with the 42 genetic markers previously reported. Microfilaria from ten well-characterized new isolates called ZoeKY, ZoeMI, ZoeGCFL, ZoeAL, ZoeMP3, ZoeMO, ZoeAMAL, ZoeLA, ZoeJYD-34, and Metairie were extracted from fresh blood from dogs. DNA were extracted and sequenced with MiSeq technology. Allele frequencies were calculated and compared with the previously reported susceptible, LOE, and resistant D. immitis populations. Results The allele frequencies identified in the current resistant and susceptible isolates were in accordance with the allele frequencies previously reported in related phenotypes. The ZoeMO population, a subset of the ZoeJYD-34 population, showed a genetic profile that was consistent with some reversion towards susceptibility compared with the parental ZoeJYD-34 population. The Random Forest algorithm was used to create a predictive model using different SNPs. The model with a combination of three SNPs (NODE_42411_RC, NODE_21554_RC, and NODE_45689) appears to be suitable for future monitoring. Conclusions MiSeq technology provided a suitable methodology to work with the microfilarial samples. The list of SNPs that showed good predictability for ML resistance was narrowed. Additional phenotypically well characterized D. immitis isolates are required to finalize the best set of SNPs to be used for large scale ML resistance screening
    corecore