14 research outputs found

    Deep Synoptic Array Science: Polarimetry of 25 New Fast Radio Bursts Provides Insights into their Origins

    Full text link
    We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data reduction, calibration, and analysis procedures developed for this novel instrument. The data have 32 μ\mus time resolution and sensitivity to Faraday rotation measures (RMs) between ±106\pm10^{6} rad m2^{-2}. RMs are detected for 20 FRBs with magnitudes ranging from 446704-4670 rad m2^{-2}. 9/259/25 FRBs are found to have high (70%\ge 70\%) linear-polarization fractions. The remaining FRBs exhibit significant circular polarization (3/253/25), or are either partially depolarized (8/258/25) or unpolarized (5/255/25). We investigate the mechanism of depolarization, disfavoring stochastic RM variations within a scattering screen as a dominant cause. Polarization-state and possible RM variations are observed in the four FRBs with multiple sub-components, but only one other FRB shows a change in polarization state. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB sub-populations and FRBs with Galactic pulsars. Although FRBs are typically far more polarized than the average profiles of Galactic pulsars, and exhibit greater spread in polarization fractions than pulsar single pulses, we find a remarkable similarity between FRB polarization fractions and the youngest (characteristic ages <105<10^{5} yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and where propagation effects within progenitor magnetospheres can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric-propagation geometries may form a useful analogy for the origin of FRB polarization.Comment: 43 pages, 17 figure

    Deep Synoptic Array Science: Implications of Faraday Rotation Measures of Localized Fast Radio Bursts

    Full text link
    Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of ten as yet non-repeating FRBs detected and localized to host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet non-repeating FRBs show a correlation between the host-DM and host-RM in the rest frame, and we find an anti-correlation between extragalactic RM (in the observer frame) and redshift for non-repeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circum-burst medium in some repeating FRBs, and the intra-cluster medium (ICM) of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths, BB_{||}, are characteristically larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts

    Deep Synoptic Array science I: discovery of the host galaxy of FRB 20220912A

    Full text link
    We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellipse of ±2\pm2 arcsec and ±1\pm1 arcsec in right ascension and declination respectively. The two bursts have disparate polarization properties and temporal profiles. We find a Faraday rotation measure that is consistent with the low value of +0.6+0.6 rad m2^{-2} reported by CHIME/FRB. The DSA-110 localization overlaps with the galaxy PSO J347.2702+48.7066 at a redshift z=0.0771z=0.0771, which we identify as the likely host. PSO J347.2702++48.7066 has a stellar mass of approximately 1010M10^{10}M_{\odot}, modest internal dust extinction, and a star-formation rate likely in excess of 0.1M0.1\,M_{\odot} yr1^{-1}. The host-galaxy contribution to the dispersion measure is likely 50\lesssim50 pc cm3^{-3}. The FRB 20220912A source is therefore likely viewed along a tenuous plasma column through the host galaxy.Comment: 10 pages, 7 figures, 2 tables, submitted to AAS Journal

    The 21 cm Power Spectrum from the Cosmic Dawn: First Results from the OVRO-LWA

    Get PDF
    The 21 cm transition of neutral hydrogen is opening an observational window into the Cosmic Dawn of the universe—the epoch of first star formation. We use 28 hr of data from the Owens Valley Radio Observatory Long Wavelength Array to place upper limits on the spatial power spectrum of 21 cm emission at z ≈ 18.4 (Δ_(21) ≾ 10^4 mK), and within the absorption feature reported by the EDGES experiment. In the process we demonstrate the first application of the double Karhunen–Loève transform for foreground filtering, and diagnose the systematic errors that are currently limiting the measurement. We also provide an updated model for the angular power spectrum of low-frequency foreground emission measured from the northern hemisphere, which can be used to refine sensitivity forecasts for next-generation experiments

    COMAP Early Science: VII. Prospects for CO Intensity Mapping at Reionization

    Full text link
    We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at reionization redshifts (z58z\sim5-8) in addition to providing a significant boost to the z3z\sim3 sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-EoR measurement. We carry out the most detailed forecast to date of an intensity mapping cross-correlation, and find that five out of the six models we consider yield signal to noise ratios (S/N) 20\gtrsim20 for COMAP-EoR, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-EoR can make a detailed measurement of the cosmic molecular gas history from z28z\sim2-8, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, for the single model that does not predict numerous faint emitters, a COMAP-EoR-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting the faintest models and characterizing the brightest signals in extreme detail.Comment: Paper 7 of 7 in series. 19 pages, 10 figures, to be submitted to Ap

    COMAP Early Science: IV. Power Spectrum Methodology and Results

    Full text link
    We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales k=0.0510.62Mpc1k=0.051-0.62 \,\mathrm{Mpc}^{-1} we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\textrm{K}^2\mathrm{Mpc}^3, the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum in the literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap

    COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey

    Full text link
    We present early results from the COMAP Galactic Plane Survey conducted between June 2019 and April 2021, spanning 20<<4020^\circ<\ell<40^\circ in Galactic longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular resolution of 4.54.5^{\prime}. The full survey will span 20\ell \sim 20^{\circ}- 220220^{\circ} and will be the first large-scale radio continuum survey at 3030 GHz with sub-degree resolution. We present initial results from the first part of the survey, including diffuse emission and spectral energy distributions (SEDs) of HII regions and supernova remnants. Using low and high frequency surveys to constrain free-free and thermal dust emission contributions, we find evidence of excess flux density at 3030\,GHz in six regions that we interpret as anomalous microwave emission. Furthermore we model UCHII contributions using data from the 55\,GHz CORNISH catalogue and reject this as the cause of the 3030\,GHz excess. Six known supernova remnants (SNR) are detected at 3030\,GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 3030\,GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free-free emission. The full COMAP Galactic plane survey, to be released in 2023/2024, will be an invaluable resource for Galactic astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap

    COMAP Early Science: III. CO Data Processing

    Full text link
    We describe the first season COMAP analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and map-making. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including χ2\chi^2 and multi-scale correlation tests. Applying this pipeline to the first-season COMAP data, we produce a dataset with very low levels of correlated noise. We find that one of our two scanning strategies (the Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our data processing and observing efficiencies and take account of planned improvements to estimate our future performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap

    COMAP Early Science: II. Pathfinder Instrument

    Full text link
    Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the concept and develop the technology for future experiments, as well as delivering early science products. With 19 receiver channels in a hexagonal focal plane arrangement on a 10.4 m antenna, and an instantaneous 26-34 GHz frequency range with 2 MHz resolution, it is ideally suited to measuring CO(JJ=1-0) from z3z\sim3. In this paper we discuss strategies for designing and building the Pathfinder and the challenges that were encountered. The design of the instrument prioritized LIM requirements over those of ancillary science. After a couple of years of operation, the instrument is well understood, and the first year of data is already yielding useful science results. Experience with this Pathfinder will drive the design of the next generations of experiments.Comment: Paper 2 of 7 in series. 27 pages, 28 figures, submitted to Ap
    corecore