2,174 research outputs found

    Arrest and flow of colloidal glasses

    Full text link
    I review recent progress in understanding the arrest and flow behaviour of colloidal glasses, based on mode coupling theory (MCT) and related approaches. MCT has had notable recent successes in predicting the re-entrant arrest behaviour of colloids with short range attractions. Developments based upon it offer important steps towards calculating, from rational foundations in statistical mechanics, nonlinear flow parameters such as the yield stress of a colloidal glass. An important open question is why MCT works so well.Comment: Invited Plenary Contribution Th2002 Paris, to appear in Annales Henri Poincar

    Flow instabilities in complex fluids: Nonlinear rheology and slow relaxations

    Full text link
    We here present two simplified models aimed at describing the long-term, irregular behaviours observed in the rheological response of certain complex fluids, such as periodic oscillations or chaotic-like variations. Both models exploit the idea of having a (non-linear) rheological equation, controlling the temporal evolution of the stress, where one of the participating variables (a "structural" variable) is subject to a distinct dynamics with a different relaxation time. The coupling between the two dynamics is a source of instability.Comment: Proceedings of "Slow Dynamics in Complex Systems 2003" (Sendai, Japan, Nov. 2003

    Sedimentation, trapping, and rectification of dilute bacteria

    Full text link
    The run-and-tumble dynamics of bacteria, as exhibited by \textit{E. coli}, offers a simple experimental realization of non-Brownian, yet diffusive, particles. Here we present some analytic and numerical results for models of the ideal (low-density) limit in which the particles have no hydrodynamic or other interactions and hence undergo independent motions. We address three cases: sedimentation under gravity; confinement by a harmonic external potential; and rectification by a strip of `funnel gates' which we model by a zone in which tumble rate depends on swim direction. We compare our results with recent experimental and simulation literature and highlight similarities and differences with the diffusive motion of colloidal particles

    Seismic detection of sonic booms

    Get PDF
    The pressure signals from a sonic boom will produce a small, but detectable, ground motion. The extensive seismic network in southern California, consisting of over 200 sites covering over 50 000 square kilometers, is used to map primary and secondary sonic boom carpets. Data from the network is used to analyze three supersonic overflights in the western United States. The results are compared to ray-tracing computations using a realistic model of the stratified atmospheric at the time of the measurements. The results show sonic boom ground exposure under the real atmosphere is much larger than previously expected or predicted by ray tracing alone. Finally, seismic observations are used to draw some inferences on the origin of a set of "mystery booms" recorded in 1992–1993 in southern California

    Computational confirmation of scaling predictions for equilibrium polymers

    Full text link
    We report the results of extensive Dynamic Monte Carlo simulations of systems of self-assembled Equilibrium Polymers without rings in good solvent. Confirming recent theoretical predictions, the mean-chain length is found to scale as \Lav = \Lstar (\phi/\phistar)^\alpha \propto \phi^\alpha \exp(\delta E) with exponents αd=δd=1/(1+γ)≈0.46\alpha_d=\delta_d=1/(1+\gamma) \approx 0.46 and αs=[1+(γ−1)/(νd−1)]/2≈0.60,δs=1/2\alpha_s = [1+(\gamma-1)/(\nu d -1)]/2 \approx 0.60, \delta_s=1/2 in the dilute and semi-dilute limits respectively. The average size of the micelles, as measured by the end-to-end distance and the radius of gyration, follows a very similar crossover scaling to that of conventional quenched polymer chains. In the semi-dilute regime, the chain size distribution is found to be exponential, crossing over to a Schultz-Zimm type distribution in the dilute limit. The very large size of our simulations (which involve mean chain lengths up to 5000, even at high polymer densities) allows also an accurate determination of the self-avoiding walk susceptibility exponent γ=1.165±0.01\gamma = 1.165 \pm 0.01.Comment: 6 pages, 4 figures, LATE

    Schematic models for dynamic yielding of sheared colloidal glasses

    Full text link
    The nonlinear rheological properties of dense suspensions are discussed within simplified models, suggested by a recent first principles approach to the model of Brownian particles in a constant-velocity-gradient solvent flow. Shear thinning of colloidal fluids and dynamical yielding of colloidal glasses arise from a competition between a slowing down of structural relaxation, because of particle interactions, and enhanced decorrelation of fluctuations, caused by the shear advection of density fluctuations. A mode coupling approach is developed to explore the shear-induced suppression of particle caging and the resulting speed-up of the structural relaxation.Comment: 33 pages, 10 figures; accepted for publication in Faraday Disc. 123 (2002); small numerical correction
    • …
    corecore