91 research outputs found

    Tissues under-vacuum to overcome suboptimal preservation

    Get PDF
    Abstract The accuracy of histopathological diagnosis is strictly reliant on adequate tissue preservation, which is completely dependent on pre-analytical variables. Among these variables, the time interval between the end of surgical excision to the onset of fixation (the cold ischemia time) may adversely affect preservation of tissue morphology, influencing the interpretation and reproducibility of diagnosis. During this time interval, the activation of enzymes may produce autolysis and degradation of antigens and nucleic acids, thus potentially affecting immunocytochemical and molecular results. Several studies have described under-vacuum at 4 °C storage of fresh surgical specimens as a safe and reliable method to control cold ischemia and preserve fresh tissues, as well as to standardize fixation times and implement tissue-banking. This review article gives a systematic overview of the advantages and drawbacks of the use of under-vacuum tissue preservation and cooling in surgical pathology, highlighting the impact this procedure may have on diagnostic and experimental pathology. It also documents our experience acquired within daily practice and national and international projects

    Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, HER2-low carcinomas and beyond

    Get PDF
    Abstract The human epidermal growth factor receptor 2 (HER2) is a well-known negative prognostic factor in breast cancer and a target of the monoclonal antibody trastuzumab as well as of other anti-HER2 compounds. Pioneering works on HER2-positive breast cancer in the 90' launched a new era in clinical research and oncology practice that has reshaped the natural history of this disease. In diagnostic pathology the HER2 status is routinely assessed by using a combination of immunohistochemistry (IHC, to evaluate HER2 protein expression levels) and in situ hybridization (ISH, to assess HER2 gene status). For this purpose, international recommendations have been developed by a consensus of experts in the field, which have changed over the years according to new experimental and clinical data. In this review article we will document the changes that have contributed to a better evaluation of the HER2 status in clinical practice, furthermore we will discuss HER2 heterogeneity defined by IHC and ISH as well as by transcriptomic analysis and we will critically describe the complexity of HER2 equivocal results. Finally, we will introduce the clinical impact of HER2 mutations and we will define the upcoming category of HER2-low breast cancer with respect to emerging clinical data on the efficacy of specific anti-HER2 agents in subgroups of breast carcinomas lacking the classical oncogene addition dictated by HER2 amplification

    Caveolin 1 expression favors tumor growth and is associated with poor survival in primary lung adenocarcinomas

    Get PDF
    Despite the consolidated clinico-pathological correlates of Caveolin 1 expression in non–small cell lung cancer, the available data on the role of Caveolin 1 in relation to proliferation, migration..

    The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients

    Get PDF
    Background: Long-Interspersed Nuclear Element (L1) retrotransposons are silenced in healthy tissues but unrepressed in cancer. Even if L1 reactivation has been associated with reduced overall survival in breast cancer (BC) patients, a comprehensive correlation with clinicopathological features is still missing. Methods: Using quantitative, reverse-transcription PCR, we assessed L1 mRNA expression in 12 BC cells, 210 BC patients and in 47 normal mammary tissues. L1 expression was then correlated with molecular and clinicopathological data. Results: We identified a tumor-exclusive expression of L1s, absent in normal mammary cells and tissues. A positive correlation between L1 expression and tumor dedifferentiation, lymph-node involvement and increased immune infiltration was detected. Molecular subtyping highlighted an enrichment of L1s in basal-like cells and cancers. By exploring disease-free survival, we identified L1 overexpression as an independent biomarker for patients with a high risk of recurrence in hormone-receptor-negative BCs. Conclusions: Overall, L1 reactivation identified BCs with aggressive features and patients with a worse clinical fate

    Differences and homologies of chromosomal alterations within and between breast cancer cell lines: A clustering analysis

    Get PDF
    BACKGROUND: The MCF7 (ER+/HER2-), T47D (ER+/HER2-), BT474 (ER+/HER2+) and SKBR3 (ER-/HER2+) breast cancer cell lines are widely used in breast cancer research as paradigms of the luminal and HER2 phenotypes. Although they have been subjected to cytogenetic analysis, their chromosomal abnormalities have not been carefully characterized, and their differential cytogenetic profiles have not yet been established. In addition, techniques such as comparative genomic hybridization (CGH), microarray-based CGH and multiplex ligation-dependent probe amplification (MLPA) have described specific regions of gains, losses and amplifications of these cell lines; however, these techniques cannot detect balanced chromosomal rearrangements (e.g., translocations or inversions) or low frequency mosaicism. RESULTS: A range of 19 to 26 metaphases of the MCF7, T47D, BT474 and SKBR3 cell lines was studied using conventional (G-banding) and molecular cytogenetic techniques (multi-color fluorescence in situ hybridization, M-FISH). We detected previously unreported chromosomal changes and determined the content and frequency of chromosomal markers. MCF7 and T47D (ER+/HER2-) cells showed a less complex chromosomal make up, with more numerical than structural alterations, compared to BT474 and SKBR3 (HER2+) cells, which harbored the highest frequency of numerical and structural aberrations. Karyotype heterogeneity and clonality were determined by comparing all metaphases within and between the four cell lines by hierarchical clustering. The latter analysis identified five main clusters. One of these clusters was characterized by numerical chromosomal abnormalities common to all cell lines, and the other four clusters encompassed cell-specific chromosomal abnormalities. T47D and BT474 cells shared the most chromosomal abnormalities, some of which were shared with SKBR3 cells. MCF7 cells showed a chromosomal pattern that was markedly different from those of the other cell lines. CONCLUSIONS: Our study provides a comprehensive and specific characterization of complex chromosomal aberrations of MCF7, T47D, BT474 and SKBR3 cell lines. The chromosomal pattern of ER+/HER2- cells is less complex than that of ER+/HER2+ and ER-/HER2+ cells. These chromosomal abnormalities could influence the biologic and pharmacologic response of cells. Finally, although gene expression profiling and aCGH studies have classified these four cell lines as luminal, our results suggest that they are heterogeneous at the cytogenetic level

    Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cellsin vitroandin vivoon orthotopic xenograft tumors

    Get PDF
    Anaplastic carcinoma of the thyroid (ATC) is a lethal human malignant cancer with median survival of 6 months. To date, no treatment has substantially changed its course, which makes urgent need for the development of novel drugs or novel formulations for drug delivery. Nanomedicine has enormous potential to improve the accuracy of cancer therapy by enhancing availability and stability, decreasing effective doses and reducing side effects of drugs. Camptothecin (CPT) is an inhibitor of DNA topoisomerase-I with several anticancer properties but has poor solubility and a high degradation rate. Previously, we reported that CPT encapsulated in β-cyclodextrin-nanosponges (CN-CPT) increased solubility, was protected from degradation and inhibited the growth of prostate tumor cells both in vitro and in vivo. The aim of this study was to extend that work by assessing the CN-CPT effectiveness on ATC both in vitro and in vivo. Results showed that CN-CPT significantly inhibited viability, clonogenic capacity and cell-cycle progression of ATC cell lines showing a faster and enhanced effect compared to free CPT. Moreover, CN-CPT inhibited tumor cell adhesion to vascular endothelial cells, migration, secretion of pro-angiogenic factors (IL-8 and VEGF-α), expression of β-PIX, belonging to the Rho family activators, and phosphorylation of the Erk1/2 MAPK. Finally, CN-CPT significantly inhibited the growth, the metastatization and the vascularization of orthotopic ATC xenografts in SCID/beige mice without apparent toxic effects in vivo. This work extends the previous insight showing that β-cyclodextrin-nanosponges are a promising tool for the treatment of ATC
    corecore