7 research outputs found

    Tutorial: Are You My Neighbor?: Bringing Order to Neighbor Computing Problems

    Get PDF
    Finding nearest neighbors is an important topic that has attracted much attention over the years and has applications in many fields, such as market basket analysis, plagiarism and anomaly detection, community detection, ligand-based virtual screening, etc. As data are easier and easier to collect, finding neighbors has become a potential bottleneck in analysis pipelines. Performing pairwise comparisons given the massive datasets of today is no longer feasible. The high computational complexity of the task has led researchers to develop approximate methods, which find many but not all of the nearest neighbors. Yet, for some types of data, efficient exact solutions have been found by carefully partitioning or filtering the search space in a way that avoids most unnecessary comparisons.In recent years, there have been several fundamental advances in our ability to efficiently identify appropriate neighbors, especially in non-traditional data, such as graphs or document collections. In this tutorial, we provide an in-depth overview of recent methods for finding (nearest) neighbors, focusing on the intuition behind choices made in the design of those algorithms and on the utility of the methods in real-world applications. Our tutorial aims to provide a unifying view of neighbor computing problems, spanning from numerical data to graph data, from categorical data to sequential data, and related application scenarios. For each type of data, we will review the current state-of-the-art approaches used to identify neighbors and discuss how neighbor search methods are used to solve important problems

    Characterization of Anaplasma marginale subsp. centrale strains by use of msp1aS genotyping reveals a wildlife reservoir

    Get PDF
    Bovine anaplasmosis caused by the intraerythrocytic rickettsial pathogen Anaplasma marginale is endemic in South Africa. Anaplasma marginale subspecies centrale also infects cattle; however, it causes a milder form of anaplasmosis and is used as a live vaccine against A. marginale. There has been less interest in the epidemiology of A. marginale subsp. centrale, and, as a result, there are few reports detecting natural infections of this organism. When detected in cattle, it is often assumed that it is due to vaccination, and in most cases, it is reported as coinfection with A. marginale without characterization of the strain. A total of 380 blood samples from wild ruminant species and cattle collected from biobanks, national parks, and other regions of South Africa were used in duplex real-time PCR assays to simultaneously detect A. marginale and A. marginale subsp. centrale. PCR results indicated high occurrence of A. marginale subsp. centrale infections, ranging from 25 to 100% in national parks. Samples positive for A. marginale subsp. centrale were further characterized using the msp1aS gene, a homolog of msp1 of A. mar-ginale, which contains repeats at the 5= ends that are useful for genotyping strains. A total of 47 Msp1aS repeats were identified, which corresponded to 32 A. marginale subsp. centrale genotypes detected in cattle, buffalo, and wildebeest. RepeatAnalyzer was used to examine strain diversity. Our results demonstrate a diversity of A. marginale subsp. centrale strains from cattle and wildlife hosts from South Africa and indicate the utility of msp1aS as a genotypic marker for A. marginale subsp. centrale strain diversity.http://jcm.asm.org2017-04-30hb2017Veterinary Tropical Disease

    A nearest-neighbors network model for sequence data reveals new insight into genotype distribution of a pathogen

    No full text
    Abstract Background Sequence similarity networks are useful for classifying and characterizing biologically important proteins. Threshold-based approaches to similarity network construction using exact distance measures are prohibitively slow to compute and rely on the difficult task of selecting an appropriate threshold, while similarity networks based on approximate distance calculations compromise useful structural information. Results We present an alternative network representation for a set of sequence data that overcomes these drawbacks. In our model, called the Directed Weighted All Nearest Neighbors (DiWANN) network, each sequence is represented by a node and is connected via a directed edge to only the closest sequence, or sequences in the case of ties, in the dataset. Our contributions span several aspects. Specifically, we: (i) Apply an all nearest neighbors network model to protein sequence data from three different applications and examine the structural properties of the networks; (ii) Compare the model against threshold-based networks to validate their semantic equivalence, and demonstrate the relative advantages the model offers; (iii) Demonstrate the model’s resilience to missing sequences; and (iv) Develop an efficient algorithm for constructing a DiWANN network from a set of sequences. We find that the DiWANN network representation attains similar semantic properties to threshold-based graphs, while avoiding weaknesses of both high and low threshold graphs. Additionally, we find that approximate distance networks, using BLAST bitscores in place of exact edit distances, can cause significant loss of structural information. We show that the proposed DiWANN network construction algorithm provides a fourfold speedup over a standard threshold based approach to network construction. We also identify a relationship between the centrality of a sequence in a similarity network of an Anaplasma marginale short sequence repeat dataset and how broadly that sequence is dispersed geographically. Conclusion We demonstrate that using approximate distance measures to rapidly construct similarity networks may lead to significant deficiencies in the structure of that network in terms centrality and clustering analyses. We present a new network representation that maintains the structural semantics of threshold-based networks while increasing connectedness, and an algorithm for constructing the network using exact distance measures in a fraction of the time it would take to build a threshold-based equivalent

    RepeatAnalyzer: a tool for analysing and managing short-sequence repeat data

    Get PDF
    Short-sequence repeats (SSRs) occur in both prokaryotic and eukaryotic DNA, inter- and intragenically, and may be exact or inexact copies. When heterogeneous SSRs are present in a given locus, we can take advantage of the pattern of different repeats to genotype strains based on the SSRs. Cataloguing and tracking these repeats can be difficult as diverse groups of researchers are involved in the identification of the repeats. Additionally, the task is error-prone when done manually. We developed RepeatAnalyzer, a new software tool capable of tracking, managing, analysing and cataloguing SSRs and genotypes using Anaplasma marginale as a model species. RepeatAnalyzer's analysis capability includes novel metrics for measuring regional genetic diversity (corresponding to variety and regularity of SSR occurrence). As a part of its visualization capabilities, RepeatAnalyzer produces high quality maps of the geographic distribution of genotypes or SSRs over a region of interest. RepeatAnalyzer's repeat identification functionality was validated for all SSRs and genotypes reported in 21 publications, using 380 A. marginale isolates gathered from the five publications within that list that provided access to their isolates. The tool produced accurate genotyping results in every case. In addition, it uncovered a number of errors in the published literature: 11 cases where SSRs were misreported, 5 cases where two different SSRs had been given the same name, and 16 cases where two or more names had been given to a single SSR. The analysis and visualization functionalities of the tool are demonstrated using several examples. RepeatAnalyzer is a robust software tool that can be used for storing, managing, and analysing short-sequence repeats for the purpose of strain identification. The tool can be used for any set of SSRs regardless of species. When applied to A. marginale, our test case, we show that genotype lengths for a given region follow a normal distribution, while SSR frequencies follow a power-law-like distribution. Further, we find that over 90 % of repeats are 28 to 29 amino acids long, which is in agreement with conventional wisdom. Lastly, our analysis reveals that the most common edit distance is five or six, which is counter-intuitive since we expected that result to be closer to one, resulting from the simplest change from one repeat to another

    Sequence Similarity Network Analysis Provides Insight into the Temporal and Geographical Distribution of Mutations in SARS-CoV-2 Spike Protein

    No full text
    Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), which still infects hundreds of thousands of people globally each day despite various countermeasures, has been mutating rapidly. Mutations in the spike (S) protein seem to play a vital role in viral stability, transmission, and adaptability. Therefore, to control the spread of the virus, it is important to gain insight into the evolution and transmission of the S protein. This study deals with the temporal and geographical distribution of mutant S proteins from sequences gathered across the US over a period of 19 months in 2020 and 2021. The S protein sequences are studied using two approaches: (i) multiple sequence alignment is used to identify prominent mutations and highly mutable regions and (ii) sequence similarity networks are subsequently employed to gain further insight and study mutation profiles of concerning variants across the defined time periods and states. Additionally, we tracked the variants using visualizations on geographical maps. The visualizations produced using the Directed Weighted All Nearest Neighbors (DiWANN) networks and maps provided insights into the transmission of the virus that reflect well the statistics reported for the time periods studied. We found that the networks created using DiWANN are superior to commonly used approximate distance networks created using BLAST bitscores. The study offers a richer computational approach to analyze the transmission profile of the prominent S protein mutations in SARS-CoV-2 and can be extended to other proteins and viruses

    Co-infections with multiple genotypes of Anaplasma marginale in cattle indicate pathogen diversity

    Get PDF
    BACKGROUND : Only a few studies have examined the presence of Anaplasma marginale and Anaplasma centrale in South Africa, and no studies have comprehensively examined these species across the whole country. To undertake this country-wide study we adapted a duplex quantitative real-time PCR (qPCR) assay for use in South Africa but found that one of the genes on which the assay was based was variable. Therefore, we sequenced a variety of field samples and tested the assay on the variants detected. We used the assay to screen 517 cattle samples sourced from all nine provinces of South Africa, and subsequently examined A. marginale positive samples for msp1α genotype to gauge strain diversity. RESULTS : Although the A. marginale msp1β gene is variable, the qPCR functions at an acceptable efficiency. The A. centrale groEL gene was not variable within the qPCR assay region. Of the cattle samples screened using the assay, 57% and 17% were found to be positive for A. marginale and A. centrale, respectively. Approximately 15% of the cattle were co-infected. Msp1α genotyping revealed 36 novel repeat sequences. Together with data from previous studies, we analysed the Msp1a repeats from South Africa where a total of 99 repeats have been described that can be attributed to 190 msp1α genotypes. While 22% of these repeats are also found in other countries, only two South African genotypes are also found in other countries; otherwise, the genotypes are unique to South Africa. CONCLUSIONS : Anaplasma marginale was prevalent in the Western Cape, KwaZulu-Natal and Mpumalanga and absent in the Northern Cape. Anaplasma centrale was prevalent in the Western Cape and KwaZulu-Natal and absent in the Northern Cape and Eastern Cape. None of the cattle in the study were known to be vaccinated with A. centrale, so finding positive cattle indicates that this organism appears to be naturally circulating in cattle. A diverse population of A. marginale strains are found in South Africa, with some msp1α genotypes widely distributed across the country, and others appearing only once in one province. This diversity should be taken into account in future vaccine development studies.The National Research Foundation (NRF) (Nicola Collins, grant number 81840); Technology Innovation Agency, Tshwane Animal Health Cluster (TIA, TAHC) (Marinda Oosthuizen, grant number TAHC12-00037).http://www.parasitesandvectors.comam2018Forestry and Agricultural Biotechnology Institute (FABI)Veterinary Tropical Disease
    corecore