14 research outputs found

    Interleukin 30 to Interleukin 40.

    No full text

    Characterization of Interleukin-40, a Novel B Cell-Associated Cytokine

    Get PDF
    We describe a novel B cell-associated cytokine, encoded by an uncharacterized gene (C17orf99), whose expression is induced in B cells upon activation. C17orf99 is only present in mammalian genomes, and it encodes a small (~27kDa) secreted protein unrelated to other cytokine families, suggesting a function in mammalian immune responses. Accordingly, C17orf99 expression is induced in the mammary gland upon the onset of lactation, and a C17orf99-/- mouse exhibits reduced levels of IgA in the serum, gut, feces, and lactating mammary gland. C17orf99-/- mice have smaller and fewer Peyer’s patches and lower numbers of IgA secreting cells. The microbiome of C17orf99-/- mice exhibits altered composition, likely a consequence of the reduced levels of IgA in the gut. While naïve B cells can express C17orf99 upon activation, their production increases following culture with various cytokines, including IL4 and TGF-β, suggesting that differentiation can result in the expansion of C17orf99-producing B cells during some immune responses. Taken together, these observations indicate that C17orf99 encodes a novel B cell-associated cytokine, which we have called Interleukin-40, that plays an important role in the development of humoral immune responses. Importantly, IL-40 is also expressed by human activated B cells and by several human B cell lymphomas. The latter observation suggests that it may play a role in the pathogenesis of certain human diseases

    Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line

    No full text
    The long noncoding X-inactivation-specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line

    Interleukin 1 beta and matrix metallopeptidase 3 contribute to development of epidermal growth factor receptor–dependent serrated polyps in mouse cecum

    No full text
    Background & Aims: Transgenic mice (HBUS) that express the epidermal growth factor receptor (EGFR) ligand HBEGF (heparin-binding epidermal growth factor–like growth factor) and a constitutively active G protein–coupled receptor (US28) in intestinal epithelial cells develop serrated polyps in the cecum. Development of serrated polyps depends on the composition of the gut microbiota and is associated with bacterial invasion of the lamina propria, accompanied by induction of inflammation and up-regulation of interleukin 1 beta (IL1B) and matrix metalloproteinase (MMP) 3 in the cecum. We investigated the mechanisms by which these changes contribute to development of serrated polyps. Methods: We performed studies with C57BL/6 (control) and HBUS mice. To accelerate polyp development, we increased the exposure of the bacteria to the lamina propria by injecting HBUS mice with diphtheria toxin, which binds transgenic HBEGF expressed by the epithelial cells and causes apoptosis. Mice were given injections of IL1B-neutralizing antibody and the MMP inhibitor N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid. Intestinal tissues were collected from mice and analyzed by histology, reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and flow cytometry. We examined fibroblast subsets in polyps using single-cell RNA sequencing. Results: Administration of diphtheria toxin to HBUS mice accelerated development of serrated polyps (95% of treated mice developed polyps before 100 days of age, compared with 53% given vehicle). IL1B stimulated subsets of platelet-derived growth factor receptor alpha+ (PDGRFA+) fibroblasts isolated from cecum, resulting in increased expression of MMP3. Neutralizing antibodies against IL1B or administration of the MMP inhibitor reduced the number of serrated polyps that formed in the HBUS mice. Single-cell RNA sequencing analysis showed subsets of fibroblasts in serrated polyps that express genes that regulate matrix fibroblasts and inflammation. Conclusions: In studies of mice, we found that barrier breakdown and expression of inflammatory factors contribute to development of serrated polyps. Subsets of cecal PDGFRA+ fibroblasts are activated by release of IL1B from myeloid cells during the early stages of serrated polyp development. MMP3 produced by PDGFRA+ fibroblasts is important for serrated polyp development. Our findings confirm the functions of previously identified serrated polyp–associated molecules and indicate roles for immune and stromal cells in serrated polyp development.Fil: He, Zhengxiang. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Chen, Lili. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Chen, Grace. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Smaldini, Paola Lorena. Icahn School of Medicine at Mount Sinai; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Bongers, Gerold. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Catalan Dibene, Jovani. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Furtado, Glaucia C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lira, Sergio A.. Icahn School of Medicine at Mount Sinai; Estados Unido

    Cxcl17-/- mice develop exacerbated disease in a T cell-dependent autoimmune model.

    No full text
    CXCL17 is a homeostatic chemokine in the mucosa known to chemoattract dendritic cells and macrophages but can also be expressed elsewhere under inflammatory conditions. Cxcl17-/- mice have lower numbers of macrophages or dendritic cells in mucosal tissues. CXCL17 is also able to chemoattract suppressor myeloid cells that can recruit regulatory T cells. To explore a possible role of Cxcl17 in T cells, we studied T cell populations from Cxcl17-/- or wild-type (WT) littermate mice. Cxcl17-/- mice have higher numbers of CD4+ and CD8+ T cells in spleen and lymph nodes (LNs). Upon activation, they produce higher levels of several proinflammatory cytokines and chemokines. Furthermore, a Cxcl17-/- mouse developed exacerbated disease in a T cell-dependent model of experimental autoimmune encephalomyelitis (EAE). By 18 days after immunization with myelin oligodendrocyte peptide, only 44% of Cxcl17-/- mice were still alive vs. 90% for WT mice. During EAE, Cxcl17-/- mice exhibited higher numbers of lymphoid and myeloid cells in spleen and LNs, whereas they had less myeloid cell infiltration in the CNS. Cxcl17-/- mice also had higher levels of some inflammatory cytokines in serum, suggesting that they may be involved in the poor survival of these mice. Abnormal T cell function may reflect altered myeloid cell migration, or it could be due to altered T cell development in the thymus. We conclude that CXCL17 is a novel factor regulating T cell homeostasis and function

    Xist

    No full text
    corecore