68 research outputs found

    Photo-induced luminescence

    Full text link
    The present paper is a critical review dealing with the characteristics, reaction mechanisms and photoproducts, instrumentation and analytical applications of the photo-induced either chemiluminescence or fluorescence. Special attention is paid to the determination of pesticides by continuous-flow methodologies. The paper is divided into several sections covering the most relevant published papers.Catalá Icardo, M.; Martínez Calatayud, JM. (2008). Photo-induced luminescence. Critical Reviews in Analytical Chemistry. 38(2):118-130. doi:10.1080/10408340802039609S118130382Lukasiewicz, R. J., & Fitzgerald, J. M. (1973). Digital integration method for fluorimetric studies of photochemically unstable compounds. Analytical Chemistry, 45(3), 511-517. doi:10.1021/ac60325a002Aaron, J. J., Villafranca, J. E., White, V. R., & Fitzgerald, J. M. (1976). A Quantitative Photochemical-Fluorimetric Method for Measurement of Nonfluorescent Vitamin K1. Applied Spectroscopy, 30(2), 159-162. doi:10.1366/000370276774456408Coly, A., & Aaron, J.-J. (1998). Fluorimetric analysis of pesticides: Methods, recent developments and applications. Talanta, 46(5), 815-843. doi:10.1016/s0039-9140(97)00366-4Aaron, J.-J., & Coly, A. (2000). Luminescence methods in pesticide analysis. Applications to the environment. Analusis, 28(8), 699-709. doi:10.1051/analusis:2000280699Catalá Icardo, M., Garcı́a Mateo, J. V., & Martı́nez Calatayud, J. (2002). Multicommutation as a powerful new analytical tool. TrAC Trends in Analytical Chemistry, 21(5), 366-378. doi:10.1016/s0165-9936(02)00505-8Coly, A. (1999). Photochemically-induced fluorescence determination of sulfonylurea herbicides using micellar media. Talanta, 49(1), 107-117. doi:10.1016/s0039-9140(98)00349-xWerkhoven-Goewie, C. E., Boon, W. M., Praat, A. J. J., Frei, R. W., Brinkman, U. A. T., & Little, C. J. (1982). Preconcentration and LC analysis of chlorophenols, using a styrene-divinyl-benzene copolymeric sorbent and photochemical reaction detection. Chromatographia, 16(1), 53-59. doi:10.1007/bf02258869Scholten, A. H. M. T., Welling, P. L. M., Brinkman, U. A. T., & Frei, R. W. (1980). Use of PTFE coils in post-column photochemical reactors for liquid chromatograph — application to pharmaceuticals. Journal of Chromatography A, 199, 239-248. doi:10.1016/s0021-9673(01)91376-7Batley, G. E. (1984). Use of Teflon components in photochemical reactors. Analytical Chemistry, 56(12), 2261-2262. doi:10.1021/ac00276a066Engelhardt, H., & Neue, U. D. (1982). Reaction detector with three dimensional coiled open tubes in HPLC. Chromatographia, 15(7), 403-408. doi:10.1007/bf02261598Coly, A., & Aaron, J.-J. (1994). Photochemical–spectrofluorimetric method for the determination of several aromatic insecticides. The Analyst, 119(6), 1205-1209. doi:10.1039/an9941901205ALBERTGARCIA, J., ICARDO, M., & CALATAYUD, J. (2006). Analytical strategy photodegradation/chemiluminescence/continuous-flow multicommutation methodology for the determination of the herbicide Propanil. Talanta, 69(3), 608-614. doi:10.1016/j.talanta.2005.10.044Coly, A., & Aaron, J.-J. (1998). Cyclodextrin-enhanced fluorescence and photochemically-induced fluorescence determination of five aromatic pesticides in water. Analytica Chimica Acta, 360(1-3), 129-141. doi:10.1016/s0003-2670(97)00721-6Poulsen, J. B., Birks, K. S., Gandelman, M. S., & Birks, J. W. (1986). Crocheted PTFE reactors for post-column photochemistry in HPLC. Chromatographia, 22(7-12), 231-234. doi:10.1007/bf02268764Martínez Calatayud, J. 1988.Flow Injection Analysis of Pharmaceuticals. Automation in the Laboratory, 458London, UK: Taylor and Francis Ltd.Palomeque, M., Garcı́a Bautista, J. ., Catalá Icardo, M., Garcı́a Mateo, J. ., & Martı́nez Calatayud, J. (2004). Photochemical-chemiluminometric determination of aldicarb in a fully automated multicommutation based flow-assembly. Analytica Chimica Acta, 512(1), 149-156. doi:10.1016/j.aca.2004.02.031Chivulescu, A., Catalá-Icardo, M., Garcı́a Mateo, J. ., & Martı́nez Calatayud, J. (2004). New flow-multicommutation method for the photo-chemiluminometric determination of the carbamate pesticide asulam. Analytica Chimica Acta, 519(1), 113-120. doi:10.1016/j.aca.2004.05.046PAWLICOVÁ, Z., ALBERT-GARCÍA, J. R., SAHUQUILLO, I., GARCÍA MATEO, J. V., CATALÁ ICARDO, M., & MARTÍNEZ CALATAYUD, J. (2006). Chemiluminescent Determination of the Pesticide Bromoxynil by On-line Photodegradation in a Flow-Injection System. Analytical Sciences, 22(1), 29-34. doi:10.2116/analsci.22.29Mervartová, K., Calatayud, J. M., & Icardo, M. C. (2005). A Fully Automated Assembly Using Solenoid Valves for the Photodegradation and Chemiluminometric Determination of the Herbicide Chlorsulfuron. Analytical Letters, 38(1), 179-194. doi:10.1081/al-200043477Coly, A., & Aaron, J.-J. (1999). Sensitive and rapid flow injection analysis of sulfonylurea herbicides in water with micellar-enhanced photochemically induced fluorescence detection. Analytica Chimica Acta, 392(2-3), 255-264. doi:10.1016/s0003-2670(99)00229-9Garcı́a-Campaña, A. M., Aaron, J.-J., & Bosque-Sendra, J. M. (2001). Micellar-enhanced photochemically induced fluorescence detection of chlorophenoxyacid herbicides. Flow injection analysis of mecoprop and 2,4-dichlorophenoxyacetic acid. Talanta, 55(3), 531-539. doi:10.1016/s0039-9140(01)00470-2Parrilla�V�zquez, P., Gil�Garc�a, M. D., Barranco�Mart�nez, D., & Mart�nez�Galera, M. (2005). Application of coupled-column liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection to the determination of pyrethroid insecticides in vegetable samples. Analytical and Bioanalytical Chemistry, 381(6), 1217-1225. doi:10.1007/s00216-004-3043-xIrace-Guigand, S., Leverend, E., Seye, M. D. G., & Aaron, J. J. (2005). A new on-line micellar-enhanced photochemically-induced fluorescence method for determination of phenylurea herbicide residues in water. Luminescence, 20(3), 138-142. doi:10.1002/bio.817Liu, L., & Guo, Q.-X. (2002). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 42(1/2), 1-14. doi:10.1023/a:1014520830813Frankewich, R. P., Thimmaiah, K. N., & Hinze, W. L. (1991). Evaluation of the relative effectiveness of different water-soluble .beta.-cyclodextrin media to function as fluorescence enhancement agents. Analytical Chemistry, 63(24), 2924-2933. doi:10.1021/ac00024a023Patel, B. M., Moye, H. A., & Weinberger, R. (1991). Postcolumn formation of fluorophores from nitrogenous pesticides by UV photolysis. Talanta, 38(8), 913-922. doi:10.1016/0039-9140(91)80272-2Torrents, A., Anderson, B. G., Bilboulian, S., Johnson, W. E., & Hapeman, C. J. (1997). Atrazine Photolysis:  Mechanistic Investigations of Direct and Nitrate-Mediated Hydroxy Radical Processes and the Influence of Dissolved Organic Carbon from the Chesapeake Bay. Environmental Science & Technology, 31(5), 1476-1482. doi:10.1021/es9607289Dogliotti, L., & Hayon, E. (1967). Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. The Journal of Physical Chemistry, 71(8), 2511-2516. doi:10.1021/j100867a019Pérez-Ruiz, T. (2001). Flow injection determination of methamidophos using online photo-oxidation and fluorimetric detection. Talanta, 54(5), 989-995. doi:10.1016/s0039-9140(01)00369-1Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). FLOW INJECTION SPECTROFLUORIMETRIC DETERMINATION OF MALATHION IN ENVIRONMENTAL SAMPLES USING ON-LINE PHOTOOXIDATION. Analytical Letters, 35(7), 1239-1250. doi:10.1081/al-120005976Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). Fluorimetric determination of arsanilic acid by flow-injection analysis using on-line photo-oxidation. Analytical and Bioanalytical Chemistry, 372(2), 387-390. doi:10.1007/s00216-001-1173-yPérez-Ruiz, T., Martı́nez-Lozano, C., Tomás, V., & Martı́n, J. (2001). Flow-injection fluorimetric method for the determination of dimethylarsinic acid using on-line photo-oxidation. Analytica Chimica Acta, 447(1-2), 229-235. doi:10.1016/s0003-2670(01)01299-5Baird, C. 1995.Environmental Chemistry, 509–510. New York: W. H. Freeman and Company.Bauer, R., & Fallmann, H. (1997). The Photo-Fenton Oxidation — A cheap and efficient wastewater treatment method. Research on Chemical Intermediates, 23(4), 341-354. doi:10.1163/156856797x00565Huston, P. L., & Pignatello, J. J. (1999). Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Research, 33(5), 1238-1246. doi:10.1016/s0043-1354(98)00330-3CATASTINI, C., SARAKHA, M., MAILHOT, G., & BOLTE, M. (2002). Iron (III) aquacomplexes as effective photocatalysts for the degradation of pesticides in homogeneous aqueous solutions. The Science of The Total Environment, 298(1-3), 219-228. doi:10.1016/s0048-9697(02)00219-xZepp, R. G., Schlotzhauer, P. F., & Sink, R. M. (1985). Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environmental Science & Technology, 19(1), 74-81. doi:10.1021/es00131a008Pérez-Ruiz, T., Lozano, C. M., Tomás, V., & Martı́n, J. (2003). Flow injection chemiluminescence determination of carbaryl using photolytic decomposition and photogenerated tris (2,2′-bipyridyl)ruthenium(III). Analytica Chimica Acta, 476(1), 141-148. doi:10.1016/s0003-2670(02)01355-7Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). Chemiluminescence determination of carbofuran and promecarb by flow injection analysis using two photochemical reactions. The Analyst, 127(11), 1526-1530. doi:10.1039/b207460pMiles, C. J., & Moye, H. A. (1988). Postcolumn photolysis of pesticides for fluorometric determination by high-performance liquid chromatography. Analytical Chemistry, 60(3), 220-226. doi:10.1021/ac00154a007Soto-Chinchilla, J. J., Garcı́a-Campaña, A. M., Gámiz-Gracia, L., Cuadros-Rodrı́guez, L., & Vidal, J. L. M. (2004). Determination of a N-methylcarbamate pesticide in environmental samples based on the application of photodecomposition and peroxyoxalate chemiluminescent detection. Analytica Chimica Acta, 524(1-2), 235-240. doi:10.1016/j.aca.2004.05.084And, S. T., & Aaron, J. J. (1987). Fluorimetric Determination of Non-Fluorescent Dinitroaniline Derivative Herbicides, Using the Photoreduction of Anthraquinone - 2, 6-Disulfonate. Analytical Letters, 20(12), 1995-2009. doi:10.1080/00032718708078040Miles, C. J., & Anson Moye, H. (1987). High performance liquid chromatography with post-column photolysis of pesticides for generation of fluorophores. Chromatographia, 24(1), 628-632. doi:10.1007/bf02688556Patel, B. M., Moye, H. A., & Weinberger, R. (1990). Formation of fluorophores from nitrogenous pesticides by photolysis and reaction with OPA-2-mercaptoethanol for fluorescence detection in liquid chromatography. Journal of Agricultural and Food Chemistry, 38(1), 126-134. doi:10.1021/jf00091a027Durand, G., Barceló, D., Albaigés, J., & Mansour, M. (1990). Utilisation of liquid chromatography in aquatic photodegradation studies of pesticides: A comparison between distilled water and seawater. Chromatographia, 29(3-4), 120-124. doi:10.1007/bf02268696Rosen, J. D., Strusz, R. F., & Still, C. C. (1969). Photolysis of phenylurea herbicides. Journal of Agricultural and Food Chemistry, 17(2), 206-207. doi:10.1021/jf60162a046Lay, J. P., Klein, W., & Korte, F. (1975). Beiträge zur ökologischen Chemie C. Chemosphere, 4(3), 161-168. doi:10.1016/0045-6535(75)90094-6Tanaka, F. S., Hoffer, B. L., & Wien, R. G. (1985). Detection of halogenated biphenyls from sunlight photolysis of chlorinated herbicides in aqueous solution. Pesticide Science, 16(3), 265-270. doi:10.1002/ps.2780160309Pelizzetti, E., Maurino, V., Minero, C., Carlin, V., Tosato, M. L., Pramauro, E., & Zerbinati, O. (1990). Photocatalytic degradation of atrazine and other s-triazine herbicides. Environmental Science & Technology, 24(10), 1559-1565. doi:10.1021/es00080a016Chukwudebe, A., March, R. B., Othman, M., & Fukuto, T. R. (1989). Formation of trialkyl phosphorothioate esters from organophosphorus insecticides after exposure to either ultraviolet light or sunlight. Journal of Agricultural and Food Chemistry, 37(2), 539-545. doi:10.1021/jf00086a058Durand, G., De Bertrand, N., & Barceló, D. (1991). Applications of thermospray liquid chromatography-mass spectrometry in photochemical studies of pesticides in water. Journal of Chromatography A, 554(1-2), 233-250. doi:10.1016/s0021-9673(01)88453-3WOLFE, N., ZEPP, R., & PARIS, D. (1978). Carbaryl, propham and chlorpropham: A comparison of the rates of hydrolysis and photolysis with the rate of biolysis. Water Research, 12(8), 565-571. doi:10.1016/0043-1354(78)90134-3Samanidou, V., Fytianos, K., Pfister, G., & Bahadir, M. (1988). Photochemical decomposition of carbamate pesticides in natural waters of northern Greece. Science of The Total Environment, 76(1), 85-92. doi:10.1016/0048-9697(88)90287-2Konstantinou, I. K., Sakkas, V. A., & Albanis, T. A. (2001). Photocatalytic degradation of the herbicides propanil and molinate over aqueous TiO2 suspensions: identification of intermediates and the reaction pathway. Applied Catalysis B: Environmental, 34(3), 227-239. doi:10.1016/s0926-3373(01)00218-1Machado, F., Collin, L., & Boule, P. (1995). Photolysis of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) in aqueous solution. Pesticide Science, 45(2), 107-110. doi:10.1002/ps.2780450203Boule, P., Guyon, C., & Lemaire, J. (1982). Photochemistry and environment IV- Photochemical behaviour of monochlorophenols in dilute aqueous solution. Chemosphere, 11(12), 1179-1188. doi:10.1016/0045-6535(82)90031-5Almansa Lopez, E. (2003). Simultaneous quantification of chlorophenoxyacid herbicides based on time-resolved photochemical derivatization to induce fluorescence in micellar medium. Talanta, 60(2-3), 355-367. doi:10.1016/s0039-9140(03)00109-7Garcia, L. F., Eremin, S., & Aaron, J.-J. (1996). Flow-Injection Analysis of Chlorophenoxyacid Herbicides using Photochemically Induced Fluorescence Detectiona. Analytical Letters, 29(8), 1447-1461. doi:10.1080/00032719608001493Lahuerta Zamora, L., Fuster Mestre, Y., Duart, M. J., Antón Fos, G. M., García Doménech, R., Gálvez Álvarez, J., & Martínez Calatayud, J. (2001). Prediction of the Chemiluminescent Behavior of Pharmaceuticals and Pesticides. Analytical Chemistry, 73(17), 4301-4306. doi:10.1021/ac010133iGómez-Taylor Corominas, B. (2003). Prediction of the chemiluminescent behaviour of phenols and polyphenols. Talanta, 60(2-3), 623-628. doi:10.1016/s0039-9140(03)00105-xPolo Martí, E., Catalá Icardo, M., Lahuerta Zamora, L., Antón Fos, G. M., & Martínez Calatayud, J. (2004). Theoretical prediction of the chemiluminescence behaviour of the ergot alkaloids. Analytica Chimica Acta, 527(2), 177-186. doi:10.1016/j.aca.2004.07.026P�rez-Ruiz, T., Mart�nez-Lozano, C., Tom�s, V., Sanz, A., & Garre, R. (2003). Flow Injection Spectrophotometric Determination of Ferbam Based on a Photochemical Reaction. Microchimica Acta, 142(4), 231-235. doi:10.1007/s00604-003-0027-zRoda, A., Rauch, P., Ferri, E., Girotti, S., Ghini, S., Carrea, G., & Bovara, R. (1994). Chemiluminescent flow sensor for the determination of Paraoxon and Aldicarb pesticides. Analytica Chimica Acta, 294(1), 35-42. doi:10.1016/0003-2670(94)85043-7Maniasso, N., Zagatto, E. A. G., Reis, S., Santos, J. L. M., & Lima, J. L. F. C. (1999). Exploitation of micellar medium for photochemical-spectrofluorimetric flow-injection determination of fenvalerate. Laboratory Automation & Information Management, 34(2), 143-148. doi:10.1016/s1381-141x(99)00016-7Vı́lchez, J. ., Valencia, M. ., Navalón, A., Molinero-Morales, B., & Capitán-Vallvey, L. . (2001). Flow injection analysis of the insecticide imidacloprid in water samples with photochemically induced fluorescence detection. Analytica Chimica Acta, 439(2), 299-305. doi:10.1016/s0003-2670(01)01039-

    Determination of N-methylcarbamate pesticides using flow injection with photoinduced chemiluminescence detection

    Full text link
    A sensitive, economic, rapid and simple method for the determination of four N-methylcarbamate pesticides: methomyl (2.0–80 μg L−1), aldicarb (5.0–50 μg L−1), butocarboxim (2.0–60 μg L−1) and oxamyl (2.0–60 μg L−1); is reported. It relies on the coupling of photoinduced chemiluminescence (PICL) detection with flow injection (FI) methodology. The automation of FI together with the use of light as a reagent decreased the environmental impact of the analysis. The proposed method was based on the oxidation of these pesticides, previously irradiated on-line with UV light, with cerium(IV), using quinine as a sensitiser. Limits of detection below the legal limits (100 ng L−1) established by the European Union for drinking waters were obtained without the need of preconcentration steps. A good inter-day reproducibility (1.6–6.4%, n = 5), repeatability (rsd = 2.7 %, n = 25) and high throughput (123 h−1) were achieved. The method was successfully applied to the determination of methomyl in natural waters with mean recoveries ranging from 90% to 98%.The authors would like to thank Ministerio de Educacion y Ciencia from Spain and FEDER funds for financial support: Project CTM2006-11991.López Paz, JL.; Catalá Icardo, M.; Langa Sánchez, A. (2014). Determination of N-methylcarbamate pesticides using flow injection with photoinduced chemiluminescence detection. International Journal of Environmental Analytical Chemistry. 94(6):606-617. https://doi.org/10.1080/03067319.2013.879295S606617946Santaladchaiyakit, Y., Srijaranai, S., & Burakham, R. (2012). Methodological aspects of sample preparation for the determination of carbamate residues: A review. Journal of Separation Science, 35(18), 2373-2389. doi:10.1002/jssc.201200431Fytianos, K., Pitarakis, K., & Bobola, E. (2006). Monitoring ofN-methylcarbamate pesticides in the Pinios River (central Greece) by HPLC. International Journal of Environmental Analytical Chemistry, 86(1-2), 131-145. doi:10.1080/03067310500248171Moreno-González, D., Huertas-Pérez, J. F., Gámiz-Gracia, L., & García-Campaña, A. M. (2011). Determination of carbamates at trace levels in water and cucumber by capillary liquid chromatography. International Journal of Environmental Analytical Chemistry, 91(14), 1329-1340. doi:10.1080/03067319.2010.520127Lambropoulou, D. A., & Albanis, T. A. (2007). Methods of sample preparation for determination of pesticide residues in food matrices by chromatography–mass spectrometry-based techniques: a review. Analytical and Bioanalytical Chemistry, 389(6), 1663-1683. doi:10.1007/s00216-007-1348-2Trufelli, H., Palma, P., Famiglini, G., & Cappiello, A. (2010). An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrometry Reviews, 30(3), 491-509. doi:10.1002/mas.20298Hernández-Borges, J., Frías-García, S., Cifuentes, A., & Rodríguez-Delgado, M. A. (2004). Pesticide analysis by capillary electrophoresis. Journal of Separation Science, 27(12), 947-963. doi:10.1002/jssc.200401820Gámiz-Gracia, L., García-Campaña, A. M., Huertas-Pérez, J. F., & Lara, F. J. (2009). Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis—A review. Analytica Chimica Acta, 640(1-2), 7-28. doi:10.1016/j.aca.2009.03.017Huertas-Pérez, J. F., & García-Campaña, A. M. (2008). Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Analytica Chimica Acta, 630(2), 194-204. doi:10.1016/j.aca.2008.09.047Pérez-Ruiz, T., Martínez-Lozano, C., & García, M. D. (2007). Determination of N-methylcarbamate pesticides in environmental samples by an automated solid-phase extraction and liquid chromatographic method based on post-column photolysis and chemiluminescence detection. Journal of Chromatography A, 1164(1-2), 174-180. doi:10.1016/j.chroma.2007.07.006Orejuela, E., & Silva, M. (2003). Monitoring some phenoxyl-type N-methylcarbamate pesticide residues in fruit juices using high-performance liquid chromatography with peroxyoxalate-chemiluminescence detection. Journal of Chromatography A, 1007(1-2), 197-201. doi:10.1016/s0021-9673(03)00934-8López-Paz, J. L., & Catalá-Icardo, M. (2011). Analysis of Pesticides by Flow Injection Coupled with Chemiluminescent Detection: A Review. Analytical Letters, 44(1-3), 146-175. doi:10.1080/00032719.2010.500788WANG, X., LIN, J., LIU, M., & CHENG, X. (2009). Flow-based luminescence-sensing methods for environmental water analysis. TrAC Trends in Analytical Chemistry, 28(1), 75-87. doi:10.1016/j.trac.2008.10.005Waseem, A., Yaqoob, M., Nabi, A., & Siddiqui, M. A. (2007). Determination of carbaryl by flow injection with luminol chemiluminescence inhibition detection. International Journal of Environmental Analytical Chemistry, 87(12), 825-832. doi:10.1080/03067310701380021WASEEM, A., YAQOOB, M., & NABI, A. (2009). Photodegradation and Flow-Injection Determination of Dithiocarbamate Fungicides in Natural Water with Chemiluminescence Detection. Analytical Sciences, 25(3), 395-400. doi:10.2116/analsci.25.395Torres-Cartas, S., Gómez-Benito, C., & Meseguer-Lloret, S. (2011). FI on-line chemiluminescence reaction for determination of MCPA in water samples. Analytical and Bioanalytical Chemistry, 402(3), 1289-1296. doi:10.1007/s00216-011-5567-1Gómez-Benito, C., Meseguer-Lloret, S., & Torres-Cartas, S. (2013). Sensitive determination of Fenamiphos in water samples by flow injection photoinduced chemiluminescence. International Journal of Environmental Analytical Chemistry, 93(2), 152-165. doi:10.1080/03067319.2012.663755Llorent-Martínez, E. J., Ortega-Barrales, P., Fernández-de Córdova, M. L., & Ruiz-Medina, A. (2011). Trends in flow-based analytical methods applied to pesticide detection: A review. Analytica Chimica Acta, 684(1-2), 30-39. doi:10.1016/j.aca.2010.10.036Trojanowicz, M. (2012). Flow-injection analysis as a tool for determination of pharmaceutical residues in aqueous environment. Talanta, 96, 3-10. doi:10.1016/j.talanta.2011.12.081Ibañez, G. A., & Escandar, G. M. (2011). Luminescence Sensors Applied to Water Analysis of Organic Pollutants—An Update. Sensors, 11(12), 11081-11102. doi:10.3390/s111211081Lara, F. J., García-Campaña, A. M., & Aaron, J.-J. (2010). Analytical applications of photoinduced chemiluminescence in flow systems—A review. Analytica Chimica Acta, 679(1-2), 17-30. doi:10.1016/j.aca.2010.09.001Icardo, M. C., & Calatayud, J. M. (2008). Photo-Induced Luminescence. Critical Reviews in Analytical Chemistry, 38(2), 118-130. doi:10.1080/10408340802039609Van Scoy, A. R., Yue, M., Deng, X., & Tjeerdema, R. S. (2012). Environmental Fate and Toxicology of Methomyl. Reviews of Environmental Contamination and Toxicology, 93-109. doi:10.1007/978-1-4614-4717-7_3RICART, I., ANTONFOS, G., DUART, M., MATEO, J., ZAMORA, L., & CALATAYUD, J. (2007). Theoretical prediction of the photoinduced chemiluminescence of pesticides. Talanta, 72(2), 378-386. doi:10.1016/j.talanta.2006.10.048Freeman, P. K., & Ndip, E. M. N. (1984). Photochemistry of oxime carbamates. 2. Phototransformations of methomyl. Journal of Agricultural and Food Chemistry, 32(4), 877-881. doi:10.1021/jf00124a046TAMIMI, M., QOURZAL, S., BARKA, N., ASSABBANE, A., & AITICHOU, Y. (2008). Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Separation and Purification Technology, 61(1), 103-108. doi:10.1016/j.seppur.2007.09.017Capitán-Vallvey, L. (2000). Chemiluminescence determination of sodium 2-mercaptoethane sulfonate by flow injection analysis using cerium(IV) sensitized by quinine. Talanta, 51(6), 1155-1161. doi:10.1016/s0039-9140(00)00291-5NIE, L., MA, H., SUN, M., LI, X., SU, M., & LIANG, S. (2003). Direct chemiluminescence determination of cysteine in human serum using quinine–Ce(IV) system. Talanta, 59(5), 959-964. doi:10.1016/s0039-9140(02)00649-5Lakowicz, J. R. (Ed.). (2006). Principles of Fluorescence Spectroscopy. doi:10.1007/978-0-387-46312-4Vichapong, J., Burakham, R., Srijaranai, S., & Grudpan, K. (2011). Sequential injection-bead injection-lab-on-valve coupled to high-performance liquid chromatography for online renewable micro-solid-phase extraction of carbamate residues in food and environmental samples. Journal of Separation Science, 34(13), 1574-1581. doi:10.1002/jssc.201100075Vichapong, J., & Burakham, R. (2012). Novel ultrasound-assisted mixed anionic–cationic surfactant-enhanced emulsification microextraction combined with HPLC for the determination of carbamate pesticides. Analytical Methods, 4(7), 2101. doi:10.1039/c2ay25139fBelmonte Vega, A., Garrido Frenich, A., & Martínez Vidal, J. L. (2005). Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry. Analytica Chimica Acta, 538(1-2), 117-127. doi:10.1016/j.aca.2005.02.003Gu, C., & Shamsi, S. A. (2010). CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column. ELECTROPHORESIS, 31(7), 1162-1174. doi:10.1002/elps.200900739Moreno-González, D., Gámiz-Gracia, L., Bosque-Sendra, J. M., & García-Campaña, A. M. (2012). Dispersive liquid–liquid microextraction using a low density extraction solvent for the determination of 17 N-methylcarbamates by micellar electrokinetic chromatography–electrospray–mass spectrometry employing a volatile surfactant. Journal of Chromatography A, 1247, 26-34. doi:10.1016/j.chroma.2012.05.048European Union (98) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human cosumption. Off. J. Eur. Commun. 41, 5.12.98, L 330/42

    Native vs photoinduced chemiluminescence in dimethoate determination

    Full text link
    The determination of dimethoate using either its native chemiluminescent (CL) properties or its photoinduced chemiluminescence obtained by irradiation with a 15W low-pressure mercury lamp was studied. Thereby, two flow injection systems (FIA) with and without irradiation were exhaustively optimized and their analytical characteristics studied. Better sensitivity and selectivity was found in absence of irradiation, due to the enhancing effect of hexadecylpyridinium chloride (HPC), which acted as a sensitizer. In the developed FIA-CL system, the alkaline hydrolysis of dimethoate with NaOH was performed on-line in presence of HPC. The oxidation of the product of hydrolysis with Ce(IV) in hydrochloric medium induced chemiluminescence. The method provided a limit of detection of only 0.05ngmL -1 without any pre-treatment. However, the combination with solid phase extraction allowed the removal of some potential interferents as well as the preconcentration of the pesticide. Finally, the developed method was successfully applied to natural waters with recoveries between 95 and 108%. © 2011 Elsevier B.V.This work was supported by the Ministry of Education and Science of Spain (Project CTM2006-11991) and FEDER funds.Catalá Icardo, M.; López Paz, JL.; Choves Barón, C.; Pena Badena, A. (2012). Native vs photoinduced chemiluminescence in dimethoate determination. ANALYTICA CHIMICA ACTA. 710:81-87. https://doi.org/10.1016/j.aca.2011.10.043S818771

    Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV)

    Full text link
    A new, fast, selective and sensitive method has been developed for the simultaneous determination of nine organothiophosphorus (OTP) pesticides, namely omethoate, dimethoate, disulfoton-sulfoxide, methidathion, phosmet, malathion, diazinon, pirimiphos-methyl and chlorpyrifos. The pesticides were separated on a Kinetex C18 column by gradient elution with acetonitrile:water. A post-column basic hydrolysis of the pesticides and later a chemiluminescence (CL) reaction with cerium (IV) in acid medium was carried out. Hexadecylpyridinium chloride highly enhanced the CL emission. Under optimized conditions, linearity, precision, limits of detection and quantification, and accuracy were determined. Both selectivity and sensitivity were compared with those obtained with UV detection. In combination with SPE, limits of detection in the range 15-80 ng/L and 5-30 ng/L were obtained when 250 mL and 1000 mL of solution were treated, respectively. When applied to 250 mL of sample the inter-day precision of the method was between 3.5% and 7.3% and the intra-day precision between 2.9% and 6.0%. The method was applied to determine OTP pesticides in spiked water samples from different origins: irrigation, river, sea, ground, spring, mineral and tap waters, being the percentage of recovery of added amounts near 100% form most of the pesticides.Catalá Icardo, M.; Lahuerta Zamora, L.; Torres-Cartas, S.; Meseguer-Lloret, S. (2014). Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). Journal of Chromatography A. 1341:31-40. doi:10.1016/j.chroma.2014.03.0243140134

    Flow injection biamperometric determination of chloramine-T in environmental, pharmaceutical and veterinary samples

    Full text link
    [EN] A flow injection assembly for the determination of chloramine-T is proposed. The sample (213 mu l) is inserted into the carrier, de-ionized water flowing at 4.1 mi min(-1). This carrier merges with a mixture of potassium iodide and sulphuric acid, and the resulting solution flows to the flow cell through a reactor 66 cm long. The chloramine-T oxidises the iodide to tri-iodide. The resulting iodide/iodine ratio is biamperometrically tested. The calibration graph is linear up to 65 mu g ml(-1) chloramine-T; the limit of detection is 0.5 mu g ml(-1); the relative standard deviation (r.s.d) of the calibration slope is 2.8% for a series of eight independent calibrations. The r.s.d. of a series of 74 peaks for 40 mu g ml(-1) chloramine-T) is 0.8%, and the sample throughput 220 h(-1). Few foreign substances interfered. The method is applied to pharmaceutical, veterinary and waste water samples.Catalá-Icardo, M.; Giménez-Romero, D.; García Mateo, J.; Martínez Calatayud, J. (2000). Flow injection biamperometric determination of chloramine-T in environmental, pharmaceutical and veterinary samples. Analytica Chimica Acta. 407(1-2):187-192. https://doi.org/10.1016/S0003-2670(99)00791-61871924071-

    Selective and sensitive chemiluminescence determination of MCPB: flow injection and liquid chromatography

    Full text link
    This paper was published in Applied Spectroscopy and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1177/0003702815620133 . Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Two new chemiluminescence (CL) methods are described for the determination of the herbicide 4-(4-chloro-o-tolyloxy) butyric acid (MCPB). First, a flow injection chemiluminescence (FI-CL) method is proposed. In this method, MCPB is photodegraded with an ultraviolet (UV) lamp and the photoproducts formed provide a great CL signal when they react with ferricyanide in basic medium. Second, a high-performance liquid chromatography chemiluminescence (HPLC-CL) method is proposed. In this method, before the photodegradation and CL reaction, the MCPB and other phenoxyacid herbicides are separated in a C18 column. The experimental conditions for the FI-CL and HPLC-CL methods are optimized. Both methods present good sensitivity, the detection limits being 0.12 mg L 1 and 0.1 mg L 1 (for FI-CL and HPLC-CL, respectively) when solid phase extraction (SPE) is applied. Intra- and interday relative standard deviations are below 9.9%. The methods have been satisfactorily applied to the analysis of natural water samples. FI-CL method can be employed for the determination of MCPB in simple water samples and for the screening of complex water samples in a fast, economic, and simple way. The HPLC-CL method is more selective, and allows samples that have not been resolved with the FI-CL method to be solved.Meseguer-Lloret, S.; Torres-Cartas, S.; Catalá-Icardo, M.; Gómez Benito, C. (2016). Selective and sensitive chemiluminescence determination of MCPB: flow injection and liquid chromatography. Applied Spectroscopy. 70(2):312-321. doi:10.1177/0003702815620133S312321702Moral, A., Caballo, C., Sicilia, M. D., & Rubio, S. (2012). Highly efficient microextraction of chlorophenoxy acid herbicides in natural waters using a decanoic acid-based nanostructured solvent prior to their quantitation by liquid chromatography–mass spectrometry. Analytica Chimica Acta, 709, 59-65. doi:10.1016/j.aca.2011.10.016Herrero-Hernández, E., Rodríguez-Gonzalo, E., Andrades, M. S., Sánchez-González, S., & Carabias-Martínez, R. (2013). Occurrence of phenols and phenoxyacid herbicides in environmental waters using an imprinted polymer as a selective sorbent. Science of The Total Environment, 454-455, 299-306. doi:10.1016/j.scitotenv.2013.03.029Baggiani, C., Giovannoli, C., Anfossi, L., & Tozzi, C. (2001). Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. Journal of Chromatography A, 938(1-2), 35-44. doi:10.1016/s0021-9673(01)01126-8Wintersteiger, R., Goger, B., & Krautgartner, H. (1999). Quantitation of chlorophenoxy acid herbicides by high-performance liquid chromatography with coulometric detection. Journal of Chromatography A, 846(1-2), 349-357. doi:10.1016/s0021-9673(99)00429-xPeruzzi, M., Bartolucci, G., & Cioni, F. (2000). Determination of phenoxyalkanoic acids and other herbicides at the ng/ml level in water by solid-phase extraction with poly(divinylbenzene-co-N-vinylpyrrolidone) sorbent and high-performance liquid chromatography–diode-array detection. Journal of Chromatography A, 867(1-2), 169-175. doi:10.1016/s0021-9673(99)01141-3Ranz, A., & Lankmayr, E. (2006). Screening and optimization of the derivatization of polar herbicides with trimethylanilinium hydroxide for GC-MS analysis. Journal of Biochemical and Biophysical Methods, 69(1-2), 3-14. doi:10.1016/j.jbbm.2006.02.007Nuhu, A. A., Basheer, C., Alhooshani, K., & Al-Arfaj, A. R. (2012). Determination of phenoxy herbicides in water samples using phase transfer microextraction with simultaneous derivatization followed by GC-MS analysis. Journal of Separation Science, 35(23), 3381-3388. doi:10.1002/jssc.201200218Jiménez, J. J. (2013). Simultaneous liquid–liquid extraction and dispersive solid-phase extraction as a sample preparation method to determine acidic contaminants in river water by gas chromatography/mass spectrometry. Talanta, 116, 678-687. doi:10.1016/j.talanta.2013.07.052EREMIN, S., LAASSIS, B., & AARON, J. (1996). Photochemical-fluorimetric method for the determination of total chlorophenoxyacid herbicides. Talanta, 43(3), 295-301. doi:10.1016/0039-9140(95)01751-8Jafari, M. T., Saraji, M., & Yousefi, S. (2012). Negative electrospray ionization ion mobility spectrometry combined with microextraction in packed syringe for direct analysis of phenoxyacid herbicides in environmental waters. Journal of Chromatography A, 1249, 41-47. doi:10.1016/j.chroma.2012.06.024Tsogas, G. Z., Giokas, D. L., Nikolakopoulos, P. G., Vlessidis, A. G., & Evmiridis, N. P. (2006). Determination of the pesticide carbaryl and its photodegradation kinetics in natural waters by flow injection–direct chemiluminescence detection. Analytica Chimica Acta, 573-574, 354-359. doi:10.1016/j.aca.2005.11.058Albert-García, J. R., & Calatayud, J. M. (2008). Determination of the herbicide benfuresate by its photo-induced chemiluminescence using flow multicommutation methodology. Talanta, 75(3), 717-724. doi:10.1016/j.talanta.2007.12.003Catalá-Icardo, M., López-Paz, J. L., Choves-Barón, C., & Peña-Bádena, A. (2012). Native vs photoinduced chemiluminescence in dimethoate determination. Analytica Chimica Acta, 710, 81-87. doi:10.1016/j.aca.2011.10.043Gómez-Benito, C., Meseguer-Lloret, S., & Torres-Cartas, S. (2013). Sensitive determination of Fenamiphos in water samples by flow injection photoinduced chemiluminescence. International Journal of Environmental Analytical Chemistry, 93(2), 152-165. doi:10.1080/03067319.2012.663755Beale, D. J., Porter, N. A., & Roddick, F. A. (2009). A fast screening method for the presence of atrazine and other triazines in water using flow injection with chemiluminescent detection. Talanta, 78(2), 342-347. doi:10.1016/j.talanta.2008.11.033Catalá-Icardo, M., López-Paz, J. L., & Pérez-Plancha, L. M. (2014). Fast Determination of Thiacloprid by Photoinduced Chemiluminescence. Applied Spectroscopy, 68(6), 642-648. doi:10.1366/13-07330Torres-Cartas, S., Gómez-Benito, C., & Meseguer-Lloret, S. (2011). FI on-line chemiluminescence reaction for determination of MCPA in water samples. Analytical and Bioanalytical Chemistry, 402(3), 1289-1296. doi:10.1007/s00216-011-5567-1Catalá-Icardo, M., Lahuerta-Zamora, L., Torres-Cartas, S., & Meseguer-Lloret, S. (2014). Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). Journal of Chromatography A, 1341, 31-40. doi:10.1016/j.chroma.2014.03.024Huertas-Pérez, J. F., & García-Campaña, A. M. (2008). Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Analytica Chimica Acta, 630(2), 194-204. doi:10.1016/j.aca.2008.09.047Orejuela, E., & Silva, M. (2003). Monitoring some phenoxyl-type N-methylcarbamate pesticide residues in fruit juices using high-performance liquid chromatography with peroxyoxalate-chemiluminescence detection. Journal of Chromatography A, 1007(1-2), 197-201. doi:10.1016/s0021-9673(03)00934-8GALERA, M., GARCIA, M., & VALVERDE, R. (2008). Determination of photoirradiated high polar benzoylureas in tomato by HPLC with luminol chemiluminescence detection. Talanta, 76(4), 815-823. doi:10.1016/j.talanta.2008.04.052Rosales-Conrado, N., León-González, M. E., Pérez-Arribas, L. V., & Polo-Díez, L. M. (2005). Effect of temperature on the separation of chlorophenoxy acids and carbamates by capillary high-performance liquid chromatography and UV (or diode array) detection. Journal of Chromatography A, 1081(1), 114-121. doi:10.1016/j.chroma.2004.12.083Geerdink, R. B., van Tol-Wildenburg, S., Niessen, W. M. A., & Brinkman, U. A. T. (1997). Determination of Phenoxy Acid Herbicides From Aqueous Samples by Improved Clean-up on Polymeric Pre-columns at High pH. The Analyst, 122(9), 889-894. doi:10.1039/a702338

    Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

    Full text link
    This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (> 120 re-uses). The proposed method allowed the detection of 0.05 mu g L-1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).This work was supported by project CTQ2014-52765-R (Ministerio de Economia y Competitividad (MINECO) of Spain and Fondo Europeo de Desarrollo Regional (FEDER)) and PROMETEO/2016/145 (Conselleria de Educacion, Investigacion, Cultura y Deporte, Generalitat Valenciana, Spain).Catalá-Icardo, M.; Gómez Benito, C.; Simo Alfonso, E.; Herrero Martinez, JM. (2017). Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent. Analytical and Bioanalytical Chemistry. 409(1):243-250. https://doi.org/10.1007/s00216-016-9993-yS2432504091Leitão S, Cerejeira MJ, Van den Brink PJ, Paulo Sousa J. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol. 2014;76:124–31.Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. Review. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62.Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immune chromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66:445–53.U.S. Environmental Protection Agency (EPA). R.E.D. facts. Prevention, pesticides and toxic substances (4508C) Chlorothalonil; 1999. EPA-738-F-99-008.Keinath AP, Holmes GJ, Everts KL, Egel DS, Langston Jr DB. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Prot. 2007;26:83–8.Wong JW, Webster MG, Bezabeh DZ, Hengel MJ, Ngim KK, Krynitsky AJ, et al. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J Agric Food Chem. 2004;52:6361–72.Walorczyk S, Gnusowski B. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 2006;1128:236–43.Leandro CC, Hancock O, Fussell RJ, Keely BJ. Quantification and screening of pesticide residues in food by gas chromatography–exact mass time-of-flight mass spectrometry. J Chromatogr A. 2007;1166:152–62.Ono Y, Yamagami T, Nishina T, Tobino T. Pesticide multiresidue analysis of 303 compounds using supercritical fluid extraction. Anal Sci. 2006;22:1473–6.Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007;1165:200–12.Guedes TJ, Heleno FF, Amaral MO, Pinto NAVD, de Queiroz MELR, da Silva DF, et al. A simple and efficient method employing solid–liquid extraction with low-temperature partitioning for the determination/monitoring of pesticide residues in strawberries by GC/ECD. J Braz Chem Soc. 2014;25:1520–7.Słowik-Borowiec M. Validation of a QuEChERS-based gas chromatographic method for multiresidue pesticide analysis in fresh peppermint including studies of matrix effects. Food Anal Methods. 2015;8:1413–24.El Mouden OI, Salghi R, Zougagh M, Ríos A, Chakir A, El Rachidi M, et al. Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. Int J Environ Anal Chem. 2013;93:499–510.Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, et al. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A. 2015;1381:37–47.Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42:198–213.Żwir-Ferenc A, Biziuk M. Solid phase extraction technique—trends, opportunities and applications. Pol J Environ Stud. 2006;15:677–90.Bielicka-Daszkiewicz K, Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta. 2009;80:614–21.Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci. 2013;36:2767–81.Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA. Anal Chem Res. 2016;7:9–16.Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73.Tong S, Liu S, Wang H, Jia Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatographia. 2014;77:5–14.Lv Y, Maya Alejandro F, Fréchet JMJ, Svec F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A. 2012;1261:121–8.Connolly D, Twamley B, Paull B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun. 2010;46:2109–11.Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control. 2014;46:108–14.Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43.Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8.Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors Actuators B. 2015;220:216–21.Matsui J, Takayose M, Akamatsu K, Nawafune H, Tamaki K, Sugimoto N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst. 2009;134:80–6.Zhao L, Zhao F, Zeng B. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron. 2014;62:19–24.Pan Y, Wang X, Zhang H, Kang Y, Wu T, Du Y. Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection. Anal Methods. 2015;7:1349–57.Zhou X, Zhou F, Liu H, Yang L, Liu J. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst. 2013;138:5832–8.Poole CF. New trends in solid-phase extraction. Trends Anal Chem. 2003;22:362–73.Lee C, Bae SJ, Gong M, Kim K, Joo S. Surface-enhanced Raman scattering of 4,4′-dicyanobiphenyl on gold and silver nanoparticle surfaces. J Raman Spectrosc. 2002;33:429–33.International Conference on Harmonization (ICH guidelines). Validation of analytical procedures: text and methodology. ICH-Q2, Geneva; 1996.Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union L330/32. 1998.Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, et al. Regulatory limits for pesticide residues in water (IUPAC technical Report). Pure Appl Chem. 2003;75:1123–55

    Influence of photo-initiators in the preparation of methacrylate monoliths into poly(ethylene-co-tetrafluoroethylene) tubing for microbore HPLC

    Full text link
    [EN] In this study, poly(butyl methacrylate-co-ethyleneglycol dimethacrylate) polymeric monoliths were in situ developed within 0.75 mm i.d. poly(ethylene-co-tetrafluoroethylene) (ETFE) tubing by UV polymerization via three different free-radical initiators fscce-azobisisobutyronitrile (AIBN), 2,2-dimethoxy-2-phenylacetophenone (DMPA) and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMPP). The influence of the nature of each photo-initiator and irradiation time on the morphological features of the polymer was investigated by scanning electron microscopy, and the chromatographic properties of the resulting microbore columns were evaluated using alkyl benzenes as test substances. The beds photo-initiated with MTMPP gave the best performance (minimum plate heights of 38 mu m for alkyl benzenes) and exhibited a satisfactory reproducibility in the chromatographic parameters (RSD < 11%). These monolithic columns were also successfully applied to the separation of phenylurea herbicides, proteins and a tryptic digest of beta-casein. (C) 2019 Elsevier B.V. All rights reserved.This research study has been sponsored by projects PROMETEO/2016/145 (Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana, Spain) and RTI2018-095536-B-I00 (Ministry of Science, Innovation and Universities, Spain).Catalá-Icardo, M.; Torres-Cartas, S.; Simó-Alfonso, EF.; Herrero-Martínez, JM. (2020). Influence of photo-initiators in the preparation of methacrylate monoliths into poly(ethylene-co-tetrafluoroethylene) tubing for microbore HPLC. Analytica Chimica Acta. 1093:160-167. https://doi.org/10.1016/j.aca.2019.09.055S160167109

    Photografted fluoropolymers as novel chromatographic supports for polymeric monolithic stationary phases

    Full text link
    [EN] In this study, porous polymer monoliths were in situ synthesized in fluoropolymers tubing to prepare microbore HPLC columns. To ensure the formation of robust homogeneous polymer monoliths in these housing supports, the inner surface of fluoropolymer tubing was modified in a two-step photografting process. Raman spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the inner poly(ethylene-co-tetrafluoroethylene) (ETFE) wall and the subsequent attachment of a monolith onto the wall. Poly(glycidyl methacrylate-co-divinylbenzene), poly(butyl methacrylate-co-ethyleneglycol dimethacrylate) and poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface vinylized ETFE tubes. The resulting monoliths exhibited good permeability and mechanical stability (pressure resistance up to 9¿MPa). The chromatographic performance of these different monolithic columns was evaluated via the separation of alkyl benzenes and proteins in a conventional HPLC system.This work was supported by project PROMETEO/2016/145 (Conselleria d'Educacio, Investigacio, Cultura i Esport,Esport, Generalitat Valenciana, Spain). The authors also thank Dr. S. Laredo-Ortiz from the Atomic Spectroscopy section of the SCSIE (University of Valencia), for her help in Raman measurements.Catalá-Icardo, M.; Torres-Cartas, S.; Meseguer-Lloret, S.; Simó-Alfonso, E.; Herrero Martínez, J. (2018). Photografted fluoropolymers as novel chromatographic supports for polymeric monolithic stationary phases. Talanta. 187:216-222. doi:10.1016/j.talanta.2018.05.026S21622218

    Recent Advances in Molecularly Imprinted Membranes for Sample Treatment and Separation

    Full text link
    [EN] This review describes the recent advances from the past five years concerning the development and applications of molecularly imprinted membranes (MIMs) in the field of sample treatment and separation processes. After a short introduction, where the importance of these materials is highlighted, a description of key aspects of membrane separation followed by the strategies of preparation of these materials is described. The review continues with several analytical applications of these MIMs for sample preparation as well as for separation purposes covering pharmaceutical, food, and environmental areas. Finally, a discussion focused on possible future directions of these materials in extraction and separation field is also given.This work was supported by project RTI2018-095536-B-I00 (Ministry of Science, Innovation and Universities, Spain).Torres-Cartas, S.; Catalá-Icardo, M.; Meseguer-Lloret, S.; Simó-Alfonso, EF.; Herrero-Martínez, JM. (2020). Recent Advances in Molecularly Imprinted Membranes for Sample Treatment and Separation. Separations. 7(4):1-28. https://doi.org/10.3390/separations7040069S1287
    corecore