21 research outputs found

    Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet

    Get PDF
    Often physiological studies using mice from one vendor show different outcome when being reproduced using mice from another vendor. These divergent phenotypes between similar mouse strains from different vendors have been assigned to differences in the gut microbiome. During recent years, evidence has mounted that the gut viral community plays a key role in shaping the gut microbiome and may thus also influence mouse phenotype. However, to date inter-vendor variation in the murine gut virome has not been studied. Using a metavirome approach, combined with 16S rRNA gene sequencing, we here compare the composition of the viral and bacterial gut community of C57BL/6N mice from three different vendors exposed to either a chow-based low-fat diet or high-fat diet. Interestingly, both the bacterial and the viral component of the gut community differed significantly between vendors. The different diets also strongly influenced both the viral and bacterial gut community, but surprisingly the effect of vendor exceeded the effect of diet. In conclusion, the vendor effect is substantial not only on the gut bacterial community but also strongly influences viral community composition. Given the effect of GM on mice phenotype, this is essential to consider for increasing reproducibility of mouse studies

    Treatment with a Monoclonal Anti-IL-12p40 Antibody Induces Substantial Gut Microbiota Changes in an Experimental Colitis Model

    Get PDF
    Background and Aim. Crohn’s disease is associated with gut microbiota (GM) dysbiosis. Treatment with the anti-IL-12p40 monoclonal antibody (12p40-mAb) has therapeutic effect in Crohn’s disease patients. This study addresses whether a 12p40-mAb treatment influences gut microbiota (GM) composition in mice with adoptive transfer colitis (AdTr-colitis). Methods. AdTr-colitis mice were treated with 12p40-mAb or rat-IgG2a or NaCl from days 21 to 47. Disease was monitored by changes in body weight, stool, endoscopic and histopathology scores, immunohistochemistry, and colonic cytokine/chemokine profiles. GM was characterized through DGGE and 16S rRNA gene-amplicon high-throughput sequencing. Results. Following 12p40-mAb treatment, most clinical and pathological parameters associated with colitis were either reduced or absent. GM was shifted towards a higher Firmicutes-to-Bacteroidetes ratio compared to rat-IgG2a treated mice. Significant correlations between 17 bacterial genera and biological markers were found. The relative abundances of the RF32 order (Alphaproteobacteria) and Akkermansia muciniphila were positively correlated with damaged histopathology and colonic inflammation. Conclusions. Shifts in GM distribution were observed with clinical response to 12p40-mAb treatment, whereas specific GM members correlated with colitis symptoms. Our study implicates that specific changes in GM may be connected with positive clinical outcomes and suggests preventing or correcting GM dysbiosis as a treatment goal in inflammatory bowel disease

    Metagenomic analysis of dairy bacteriophages: Extraction method and pilot study on whey samples derived from using undefined and defined mesophilic starter cultures

    Get PDF
    Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. Importance: The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies

    Counteracting Age-related Loss of Skeletal Muscle Mass: a clinical and ethnological trial on the role of protein supplementation and training load (CALM Intervention Study): study protocol for a randomized controlled trial

    Full text link
    corecore