34,737 research outputs found
Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas
We present techniques to perturb, measure and model the ion velocity
distribution in an ultracold neutral plasma produced by photoionization of
strontium atoms. By optical pumping with circularly polarized light we promote
ions with certain velocities to a different spin ground state, and probe the
resulting perturbed velocity distribution through laser-induced fluorescence
spectroscopy. We discuss various approaches to extract the velocity
distribution from our measured spectra, and assess their quality through
comparisons with molecular dynamic simulationsComment: 13 pages, 8 figure
Velocity Relaxation in a Strongly Coupled Plasma
Collisional relaxation of Coulomb systems is studied in the strongly coupled
regime. We use an optical pump-probe approach to manipulate and monitor the
dynamics of ions in an ultracold neutral plasma, which allows direct
measurement of relaxation rates in a regime where common Landau-Spitzer theory
breaks down. Numerical simulations confirm the experimental results and display
non-Markovian dynamics at early times.Comment: 5 pages, 5 figure
Absence of Klein's paradox for massive bosons coupled by nonminimal vector interactions
A few properties of the nonminimal vector interactions in the
Duffin-Kemmer-Petiau theory are revised. In particular, it is shown that the
space component of the nonminimal vector interaction plays a peremptory role
for confining bosons whereas its time component contributes to the leakage.
Scattering in a square step potential with proper boundary conditions is used
to show that Klein's paradox does not manifest in the case of a nonminimal
vector coupling
Kondo Quantum Criticality of Magnetic Adatoms in Graphene
We examine the exchange Hamiltonian for magnetic adatoms in graphene with
localized inner shell states. On symmetry grounds, we predict the existence of
a class of orbitals that lead to a distinct class of quantum critical points in
graphene, where the Kondo temperature scales as
near the critical coupling , and the local spin is effectively screened
by a \emph{super-ohmic} bath. For this class, the RKKY interaction decays
spatially with a fast power law . Away from half filling, we show
that the exchange coupling in graphene can be controlled across the quantum
critical region by gating. We propose that the vicinity of the Kondo quantum
critical point can be directly accessed with scanning tunneling probes and
gating.Comment: 4.1 pages, 3 figures. Added erratum correcting exponent nu=1/3. All
the other results remain vali
Intrinsic Parameters of GRB990123 from Its Prompt Optical Flash and Afterglow
We have constrained the intrinsic parameters, such as the magnetic energy
density fraction (), the electron energy density fraction
(), the initial Lorentz factor () and the Lorentz factor
of the reverse external shock (), of GRB990123, in terms of the
afterglow information (forward shock model) and the optical flash information
(reverse shock model). Our result shows: 1) the inferred values of
and are consistent with the suggestion that they may be universal
parameters, comparing to those inferred for GRB970508; 2) the reverse external
shock may have become relativistic before it passed through the ejecta shell.
Other instrinsic parameters of GRB990123, such as energy contained in the
forward shock and the ambient density are also determined and discussed
in this paper.Comment: 5 pages, MN LaTeX style, a few changes made according to referee's
suggestions, references up dated, MNRAS accepte
CP violation in semileptonic tau lepton decays
The leading order contribution to the direct CP asymmetry in tau^{+/-} ->
K^{+/-} pi^0 nu_{tau} decay rates is evaluated within the Standard Model. The
weak phase required for CP violation is introduced through an interesting
mechanism involving second order weak interactions, which is also responsible
for tiny violations of the Delta S= Delta Q rule in K_{l3} decays. The
calculated CP asymmetry turns out to be of order 10^{-12}, leaving a large
window for studying effects of non-standard sources of CP violation in this
observable.Comment: 5 pages, 3 figures, version published in Phys.Rev.
Finite temperature behavior of strongly disordered quantum magnets coupled to a dissipative bath
We study the effect of dissipation on the infinite randomness fixed point and
the Griffiths-McCoy singularities of random transverse Ising systems in chains,
ladders and in two-dimensions. A strong disorder renormalization group scheme
is presented that allows the computation of the finite temperature behavior of
the magnetic susceptibility and the spin specific heat. In the case of Ohmic
dissipation the susceptibility displays a crossover from Griffiths-McCoy
behavior (with a continuously varying dynamical exponent) to classical Curie
behavior at some temperature . The specific heat displays Griffiths-McCoy
singularities over the whole temperature range. For super-Ohmic dissipation we
find an infinite randomness fixed point within the same universality class as
the transverse Ising system without dissipation. In this case the phase diagram
and the parameter dependence of the dynamical exponent in the Griffiths-McCoy
phase can be determined analytically.Comment: 23 pages, 12 figure
String Representation of Quantum Loops
We recover a general representation for the quantum state of a relativistic
closed line (loop) in terms of string degrees of freedom.The general form of
the loop functional splits into the product of the Eguchi functional, encoding
the holographic quantum dynamics, times the Polyakov path integral, taking into
account the full Bulk dynamics, times a loop effective action, which is needed
to renormalize boundary ultraviolet divergences. The Polyakov string action is
derived as an effective actionfrom a phase space,covariant,Schild action, by
functionally integrating out the world-sheet coordinates.The area coordinates
description of the boundary quantum dynamics, is shown to be induced by the
``zero mode'' of the bulk quantum fluctuations. Finally, we briefly comment
about a ``unified, fully covariant'' description of points, loops and strings
in terms of Matrix Coordinates.Comment: 16 Pages, RevTeX, no figure
Hemisphere Mixing: a Fully Data-Driven Model of QCD Multijet Backgrounds for LHC Searches
A novel method is proposed here to precisely model the multi-dimensional
features of QCD multi-jet events in hadron collisions. The method relies on the
schematization of high-pT QCD processes as 2->2 reactions made complex by
sub-leading effects. The construction of libraries of hemispheres from
experimental data and the definition of a suitable nearest-neighbor-based
association map allow for the generation of artificial events that reproduce
with surprising accuracy the kinematics of the QCD component of original data,
while remaining insensitive to small signal contaminations. The method is
succinctly described and its performance is tested in the case of the search
for the hh->bbbb process at the LHC.Comment: 4 pages plus header, 1 figure, proceedings of EPS 2017 Venic
- …