35,693 research outputs found

    Algebraic solution of a graphene layer in a transverse electric and perpendicular magnetic fields

    Full text link
    We present an exact algebraic solution of a single graphene plane in transverse electric and perpendicular magnetic fields. The method presented gives both the eigen-values and the eigen-functions of the graphene plane. It is shown that the eigen-states of the problem can be casted in terms of coherent states, which appears in a natural way from the formalism.Comment: 11 pages, 5 figures, accepted for publication in Journal of Physics Condensed Matte

    Conductivity of suspended and non-suspended graphene at finite gate voltage

    Full text link
    We compute the DC and the optical conductivity of graphene for finite values of the chemical potential by taking into account the effect of disorder, due to mid-gap states (unitary scatterers) and charged impurities, and the effect of both optical and acoustic phonons. The disorder due to mid-gap states is treated in the coherent potential approximation (CPA, a self-consistent approach based on the Dyson equation), whereas that due to charged impurities is also treated via the Dyson equation, with the self-energy computed using second order perturbation theory. The effect of the phonons is also included via the Dyson equation, with the self energy computed using first order perturbation theory. The self-energy due to phonons is computed both using the bare electronic Green's function and the full electronic Green's function, although we show that the effect of disorder on the phonon-propagator is negligible. Our results are in qualitative agreement with recent experiments. Quantitative agreement could be obtained if one assumes water molelcules under the graphene substrate. We also comment on the electron-hole asymmetry observed in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure

    Bilayer graphene: gap tunability and edge properties

    Full text link
    Bilayer graphene -- two coupled single graphene layers stacked as in graphite -- provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy -- the Fermi level of the undoped system -- has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on Theoretical Physics: Dubna-Nano200

    Automatic learning of gait signatures for people identification

    Get PDF
    This work targets people identification in video based on the way they walk (i.e. gait). While classical methods typically derive gait signatures from sequences of binary silhouettes, in this work we explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (i.e. optical flow components). We carry out a thorough experimental evaluation of the proposed CNN architecture on the challenging TUM-GAID dataset. The experimental results indicate that using spatio-temporal cuboids of optical flow as input data for CNN allows to obtain state-of-the-art results on the gait task with an image resolution eight times lower than the previously reported results (i.e. 80x60 pixels).Comment: Proof of concept paper. Technical report on the use of ConvNets (CNN) for gait recognition. Data and code: http://www.uco.es/~in1majim/research/cnngaitof.htm

    Localized states at zigzag edges of bilayer graphene

    Full text link
    We report the existence of zero energy surface states localized at zigzag edges of bilayer graphene. Working within the tight-binding approximation we derive the analytic solution for the wavefunctions of these peculiar surface states. It is shown that zero energy edge states in bilayer graphene can be divided into two families: (i) states living only on a single plane, equivalent to surface states in monolayer graphene; (ii) states with finite amplitude over the two layers, with an enhanced penetration into the bulk. The bulk and surface (edge) electronic structure of bilayer graphene nanoribbons is also studied, both in the absence and in the presence of a bias voltage between planes.Comment: 4 pages, 5 figure
    corecore