41,023 research outputs found
Screening effects in Coulomb frustrated phase separation
We solve a model of phase separation among two competing phases frustrated by
the long-range Coulomb interaction in two and three dimensions (2D/3D) taking
into account finite compressibility effects. In the limit of strong frustration
in 2D, we recover the results of R. Jamei, S. Kivelson, and B. Spivak, Phys.
Rev. Lett. 94, 056805 (2005) and the system always breaks into domains in a
narrow range of densities, no matter how big is the frustration. For weak
frustration in 2D and for arbitrary frustration in 3D the finite
compressibility of the phases is shown to play a fundamental role. Our results
clarify the different role of screening in 2D and 3D systems. We discuss the
thermodynamic stability of the system near the transition to the phase
separated state and the possibility to observe it in real systems.Comment: 8 pages, 8 figure
Turning waves and breakdown for incompressible flows
We consider the evolution of an interface generated between two immiscible
incompressible and irrotational fluids. Specifically we study the Muskat and
water wave problems. We show that starting with a family of initial data given
by (\al,f_0(\al)), the interface reaches a regime in finite time in which is
no longer a graph. Therefore there exists a time where the solution of
the free boundary problem parameterized as (\al,f(\al,t)) blows-up: \|\da
f\|_{L^\infty}(t^*)=\infty. In particular, for the Muskat problem, this result
allows us to reach an unstable regime, for which the Rayleigh-Taylor condition
changes sign and the solution breaks down.Comment: 15 page
Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates
We consider the lightly doped cuprates YCaBaCuO
and LaSrCuO (with ,0.04), where the presence of a
fluctuating nematic state has often been proposed as a precursor of the stripe
(or, more generically, charge-density wave) phase, which sets in at higher
doping. We phenomenologically assume a quantum critical character for the
longitudinal and transverse nematic, and for the charge-ordering fluctuations,
and investigate the effects of these fluctuations in Raman spectra. We find
that the longitudinal nematic fluctuations peaked at zero transferred momentum
account well for the anomalous Raman absorption observed in these systems in
the channel, while the absence of such effect in the channel
may be due to the overall suppression of Raman response at low frequencies,
associated with the pseudogap. While in YCaBaCuO the
low-frequency lineshape is fully accounted by longitudinal nematic collective
modes alone, in LaSrCuO also charge-ordering modes with finite
characteristic wavevector are needed to reproduce the shoulders observed in the
Raman response. This different involvement of the nearly critical modes in the
two materials suggests a different evolution of the nematic state at very low
doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201
Phase diagram for Coulomb-frustrated phase separation in systems with negative short-range compressibility
Using numerical techniques and asymptotic expansions we obtain the phase
diagram of a paradigmatic model of Coulomb frustrated phase separation in
systems with negative short-range compressibility. The transition from the
homogeneous phase to the inhomogeneous phase is generically first order in
isotropic three-dimensional systems except for a critical point. Close to the
critical point, inhomogeneities are predicted to form a BCC lattice with
subsequent transitions to a triangular lattice of rods and a layered structure.
Inclusion of a strong anisotropy allows for second- and first-order transition
lines joined by a tricritical point.Comment: 4 pages, 3 figures. Improved figures and presentatio
Pseudospectral versus finite-differences schemes in the numerical integration of stochastic models of surface growth
We present a comparison between finite differences schemes and a
pseudospectral method applied to the numerical integration of stochastic
partial differential equations that model surface growth. We have studied, in
1+1 dimensions, the Kardar, Parisi and Zhang model (KPZ) and the Lai, Das Sarma
and Villain model (LDV). The pseudospectral method appears to be the most
stable for a given time step for both models. This means that the time up to
which we can follow the temporal evolution of a given system is larger for the
pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme
gives results closer to the predictions of the continuum model than those
obtained through finite difference methods. On the other hand, some numerical
instabilities appearing with finite difference methods for the LDV model are
absent when a pseudospectral integration is performed. These numerical
instabilities give rise to an approximate multiscaling observed in the
numerical simulations. With the pseudospectral approach no multiscaling is seen
in agreement with the continuum model.Comment: 13 single column pages, RevTeX, 6 eps fig
Charge-fluctuation contribution to the Raman response in superconducting cuprates
We calculate the Raman response contribution due to collective modes, finding
a strong dependence on the photon polarizations and on the characteristic
wavevectors of the modes. We compare our results with recent Raman spectroscopy
experiments in underdoped cuprates, and
, where anomalous low-energy peaks are
observed, which soften upon lowering the temperature. We show that the specific
dependence on doping and on photon polarizations of these peaks is only
compatible with charge collective excitations at finite wavelength.Comment: 5 pages, 3 figure
Evidence of a pressure-induced metallization process in monoclinic VO
Raman and combined trasmission and reflectivity mid infrared measurements
have been carried out on monoclinic VO at room temperature over the 0-19
GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence
obtained for both lattice dynamics and optical gap shows a remarkable stability
of the system up to P*10 GPa. Evidence of subtle modifications of V ion
arrangements within the monoclinic lattice together with the onset of a
metallization process via band gap filling are observed for PP*. Differently
from ambient pressure, where the VO metal phase is found only in
conjunction with the rutile structure above 340 K, a new room temperature
metallic phase coupled to a monoclinic structure appears accessible in the high
pressure regime, thus opening to new important queries on the physics of
VO.Comment: 5 pages, 3 figure
Fermion localization on branes with generalized dynamics
In this letter we consider a specific model of braneworld with nonstandard
dynamics diffused in the literature, specifically we focus our attention on the
matter energy density, the energy of system, the Ricci scalar and the thin
brane limit. As the model is classically stable and capable of localize
gravity, as a natural extension we address the issue of fermion localization of
fermions on a thick brane constructed out from one scalar field with
nonstandard kinetic terms coupled with gravity. The contribution of the
nonstandard kinetic terms in the problem of fermion localization is analyzed.
It is found that the simplest Yukawa coupling support
the localization of fermions on the thick brane. It is shown that the zero mode
for left-handed can be localized on the thick brane depending on the values for
the coupling constant .Comment: 6 pages, 3 figure
- …