2,405 research outputs found

    Quantum quench dynamics and population inversion in bilayer graphene

    Full text link
    The gap in bilayer graphene (BLG) can directly be controlled by a perpendicular electric field. By tuning the field through zero at a finite rate in neutral BLG, excited states are produced. Due to screening, the resulting dynamics is determined by coupled non-linear Landau-Zener models. The generated defect density agrees with Kibble-Zurek theory in the presence of subleading logarithmic corrections. After the quench, population inversion occurs for wavevectors close to the Dirac point. This could, at least in principle provide a coherent source of infra-red radiation with tunable spectral properties (frequency and broadening). Cold atoms with quadratic band crossing exhibit the same dynamics.Comment: 6 pages, 2 figures, 1 tabl

    Valley symmetry breaking in bilayer graphene: a test to the minimal model

    Full text link
    Physical properties reflecting valley asymmetry of Landau levels in a biased bilayer graphene under magnetic field are discussed. Within the 4−4-band continuum model with Hartree-corrected self-consistent gap and finite damping factor we predict the appearance of anomalous steps in quantized Hall conductivity due to the degeneracy lifting of Landau levels. Moreover, the valley symmetry breaking effect appears as a non-semiclassical de Haas-van Alphen effect where the reduction of the oscillation period to half cannot be accounted for through quasi-classical quantization of the orbits in reciprocal space, still valley degenerate.Comment: 4 pages, 3 figure

    Dirac points merging and wandering in a model Chern insulator

    Full text link
    We present a model for a Chern insulator on the square lattice with complex first and second neighbor hoppings and a sublattice potential which displays an unexpectedly rich physics. Similarly to the celebrated Haldane model, the proposed Chern insulator has two topologically non-trivial phases with Chern numbers ±1\pm1. As a distinctive feature of the present model, phase transitions are associated to Dirac points that can move, merge and split in momentum space, at odds with Haldane's Chern insulator where Dirac points are bound to the corners of the hexagonal Brillouin zone. Additionally, the obtained phase diagram reveals a peculiar phase transition line between two distinct topological phases, in contrast to the Haldane model where such transition is reduced to a point with zero sublattice potential. The model is amenable to be simulated in optical lattices, facilitating the study of phase transitions between two distinct topological phases and the experimental analysis of Dirac points merging and wandering

    Algebraic solution of a graphene layer in a transverse electric and perpendicular magnetic fields

    Full text link
    We present an exact algebraic solution of a single graphene plane in transverse electric and perpendicular magnetic fields. The method presented gives both the eigen-values and the eigen-functions of the graphene plane. It is shown that the eigen-states of the problem can be casted in terms of coherent states, which appears in a natural way from the formalism.Comment: 11 pages, 5 figures, accepted for publication in Journal of Physics Condensed Matte

    The role of pressure on the magnetism of bilayer graphene

    Full text link
    We study the effect of pressure on the localized magnetic moments induced by vacancies in bilayer graphene in the presence of topological defects breaking the bipartite nature of the lattice. By using a mean-field Hubbard model we address the two inequivalent types of vacancies that appear in the Bernal stacking bilayer graphene. We find that by applying pressure in the direction perpendicular to the layers the critical value of the Hubbard interaction needed to polarize the system decreases. The effect is particularly enhanced for one type of vacancies, and admits straightforward generalization to multilayer graphene in Bernal stacking and graphite. The present results clearly demonstrate that the magnetic behavior of multilayer graphene can be affected by mechanical transverse deformation
    • …
    corecore