27 research outputs found

    Testing of wing-tip spring device for gust loads alleviation

    Get PDF

    Nonlinear Folding Wing-Tips for Gust Loads Alleviation

    Get PDF

    The effect of a nonlinear energy sink on the gust response of a wing

    Get PDF
    In this paper, the potential effectiveness of a nonlinear energy sink (NES) to absorb the energy from a wing that is vibrating as a result of flying in a gusty environment is investigated. The structural dynamics of the wing is simulated using a rigid airfoil mounted on two linear/nonlinear springs to represent the bending and torsional stiffness of the wing. The wing is subjected to a combination of gust and aerodynamic loads. The unsteady aerodynamic lift and moment are modelled using Wagner's theory. Furthermore, the gust loads are obtained by assuming two different gust profiles, e.g. sharp-edged and 1-cosine gust profiles. A nonlinear energy sink, which comprises of a concentrated mass, damper and a nonlinear spring, is attached to the wing, and its effectiveness to absorb the gust energy is investigated. The coupled nonlinear aeroelastic equations are integrated numerically to determine the response of the wing. To verify the developed aeroelastic model, the obtained results are compared with the available results in the literature and an excellent agreement is observed. The results highlight that adding the NES to the wing is capable of reducing the gust oscillation amplitude of the wing significantly when the NES parameters are chosen accordingly

    Model updating strategy for structures with localised nonlinearities using frequency response measurements

    Get PDF
    This paper proposes a model updating strategy for localised nonlinear structures. It utilises an initial finite-element (FE) model of the structure and primary harmonic response data taken from low and high amplitude excitations. The underlying linear part of the FE model is first updated using low-amplitude test data with established techniques. Then, using this linear FE model, the nonlinear elements are localised, characterised, and quantified with primary harmonic response data measured under stepped-sine or swept-sine excitations. Finally, the resulting model is validated by comparing the analytical predictions with both the measured responses used in the updating and with additional test data. The proposed strategy is applied to a clamped beam with a nonlinear mechanism and good agreements between the analytical predictions and measured responses are achieved. Discussions on issues of damping estimation and dealing with data from amplitude-varying force input in the updating process are also provided
    corecore