6 research outputs found

    Effect of surfactants on the splashing dynamics of drops impacting smooth substrates

    Get PDF
    We present the results of a systematic study elucidating the role that dynamic surface tension has on the spreading and splashing dynamics of surfactant-laden droplets during the impact on hydrophobic substrates. Using four different surfactants at various concentrations, we generated a range of solutions whose dynamic surface tension were characterized to submillisecond timescales using maximum bubble-pressure tensiometry. Impact dynamics of these solutions were observed by high-speed imaging with subsequent quantitative image processing to determine the impact parameters (droplet size and speed) and dynamic wetting properties (dynamic contact angle). Droplets were slowly formed by dripping to allow the surfactants to achieve equilibrium at the free surface prior to impact. Our results indicate that while only the fastest surfactants appreciably affect the maximum spreading diameter, the droplet morphology during the initial stages of spreading is different to water for all surfactant solutions studied. Moreover, we show that surfactant-laden droplets splash more easily than pure liquid (water). Based on the association of the splashing ratio to our tensiometry measurements, we are able to predict the effective surface tension acting during splashing. These results suggest that droplet splashing characteristics are primarily defined by the stretching of the equilibrated droplet free surface

    Drop splashing after impact onto immiscible pools of different viscosities

    Get PDF
    Droplet impact onto liquid pools is a canonical scenario relevant to numerous natural phenomena and industrial processes. However, despite their ubiquity, multi-fluid systems with the drop and pool consisting of different liquids are far less well understood. Our hypothesis is that the post-impact dynamics greatly depends on the pool-to-droplet viscosity ratio , which we explore over a range of six orders of magnitude using a combination of experiments and theoretical approaches (mathematical modelling and direct numerical simulation). Our findings indicate that in this scenario the splashing threshold and the composition of the ejecta sheet are controlled by the viscosity ratio. We uncover that increasing the pool viscosity decreases the splashing threshold for high viscosity pools () when the splash comes from the droplet. By contrast, for low viscosity pools, the splash sheet comes from the pool and increasing the pool viscosity increases the splashing threshold. Surprisingly, there are conditions for which no splashing is observed under the conditions attainable in our laboratory. Furthermore, considering the interface velocity together with asymptotic arguments underlying the generation of the ejecta has allowed us to understand meaningful variations in the pressure during impact and rationalise the observed changes in the splashing threshold

    A self-assembly based supramolecular bioink with hierarchical control As a new bioprinting tool

    Get PDF
    Tissue engineering aims to capture details of the extracellular matrix (ECM) that stimulate cell growth and tissue regeneration. Molecularly complex materials or advanced additive fabrication techniques are often used to capture aspects of the ECM. Promising biofabrication techniques often lack nano and molecular scale control, as well as materials that can recreate the natural ECM or selectively guide cell behaviour. On the other hand, complex biomaterials based on molecular self-assembly tend to lack reproducibility and order beyond the nanoscale. We propose a new material fabrication platform that integrates the benefits of bioprinting and molecular self-assembly to overcome the current major limitations. Our approach relies on the co-assembly of peptide amphiphiles (PAs) with biomolecules and/or proteins found in the ECM, whilst exploiting the droplet-on-demand (DoD) printing process. Taking advantage of the interfacial fluid forces during printing, it is possible to guide the self-assembly into aligned or disordered nanofibers, hydrogel structures of different geometries and sizes, surface topographies and higher-ordered structures made from multiple hydrogels. The co-assembly process can be performed during printing and in cell-friendly conditions, whilst exhibiting high cell viability (\u3e 88 %). Moreover, multiple cell types can be spatially distributed on the outside or embedded within the tuneable biomimetic scaffolds. The combination of self-assembly with 3D-bioprinting, provides a basis for a new biofabrication platform to create hydrogels of complex geometry, structural hierarchy and tuneable chemical composition. Please click Additional Files below to see the full abstract

    It's Harder to Splash on Soft Solids

    Get PDF
    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70\% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli 100\lesssim 100kPa reduce splashing, in agreement with simple scaling arguments. Thus materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.Comment: 5 pages, 4 figure

    Droplet impact dynamics on shallow pools

    Get PDF
    When a fast droplet impacts a pool of the same fluid, a thin ejecta sheet that dominates the early-time dynamics emerges within the first few microseconds. Fluid and impact properties are known to affect its evolution; we experimentally reveal that the pool depth is a critical factor too. Whilst ejecta sheets can remain separate and subsequently fold inwards on deeper pools, they instead develop into outward-propagating lamellae on sufficiently shallow pools, undergoing a transition that we delineate by comprehensively varying impact inertia and pool depth. Aided by matching direct numerical simulation results, we find that this transition stems from a confinement effect of the pool base on the impact-induced pressure, which stretches the ejecta sheet to restrict flow into it from the droplet on sufficiently shallow pools. This insight is also applied to elucidate the well-known transition due to Reynolds number

    Екатеринбургская неделя. 1890. № 46

    Get PDF
    12 pages, 5 figuresWe study the capillary retraction of a Newtonian semi-infinite liquid filament through analytical methods. We derive a long-time asymptotic-state expansion for the filament profile using a one-dimensional free-surface slender cylindrical flow model based on the three-dimensional axisymmetric Navier-Stokes equations. The analysis identifies three distinct length and time scale regions in the retraction domain: a steady filament section, a growing spherical blob, and an intermediate matching zone. We show that liquid filaments naturally develop travelling capillary waves along their surface and a neck behind the blob. We analytically prove that the wavelength of the capillary waves is approximately 3.63 times the filament's radius at the inviscid limit. Additionally, the waves' asymptotic wavelength, decay length, and the minimum neck size are analysed in terms of the Ohnesorge number. Finally, our findings are compared with previous results from the literature and numerical simulations in Basilisk obtaining a good agreement. This analysis provides a full picture of the recoiling process going beyond the classic result of the velocity of retraction found by Taylor and Culick
    corecore