30 research outputs found

    Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse

    Get PDF
    Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33–41), 13 (F214–222), 14 (F273–281), and 23 (F559–567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-γ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine

    Nucleoprotein Nanostructures Combined with Adjuvants Adapted to the Neonatal Immune Context: A Candidate Mucosal RSV Vaccine

    Get PDF
    BACKGROUND: The human respiratory syncytial virus (hRSV) is the leading cause of severe bronchiolitis in infants worldwide. The most severe RSV diseases occur between 2 and 6 months-of-age, so pediatric vaccination will have to be started within the first weeks after birth, when the immune system is prone to Th2 responses that may turn deleterious upon exposure to the virus. So far, the high risk to prime for immunopathological responses in infants has hampered the development of vaccine. In the present study we investigated the safety and efficacy of ring-nanostructures formed by the recombinant nucleoprotein N of hRSV (N(SRS)) as a mucosal vaccine candidate against RSV in BALB/c neonates, which are highly sensitive to immunopathological Th2 imprinting. METHODOLOGY AND PRINCIPAL FINDINGS: A single intranasal administration of N(SRS) with detoxified E. coli enterotoxin LT(R192G) to 5-7 day old neonates provided a significant reduction of the viral load after an RSV challenge at five weeks of age. However, neonatal vaccination also generated an enhanced lung infiltration by neutrophils and eosinophils following the RSV challenge. Analysis of antibody subclasses and cytokines produced after an RSV challenge or a boost administration of the vaccine suggested that neonatal vaccination induced a Th2 biased local immune memory. This Th2 bias and the eosinophilic reaction could be prevented by adding CpG to the vaccine formulation, which, however did not prevent pulmonary inflammation and neutrophil infiltration upon viral challenge. CONCLUSIONS/SIGNIFICANCE: In conclusion, protective vaccination against RSV can be achieved in neonates but requires an appropriate combination of adjuvants to prevent harmful Th2 imprinting

    A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory syncytial virus (RSV) is a primary cause of serious lower respiratory tract illness for which there is still no safe and effective vaccine available. Using reverse genetics, recombinant (r)RSV and an rRSV lacking the G gene (ΔG) were constructed based on a clinical RSV isolate (strain 98-25147-X).</p> <p>Results</p> <p>Growth of both recombinant viruses was equivalent to that of wild type virus in Vero cells, but was reduced in human epithelial cells like Hep-2. Replication in cotton rat lungs could not be detected for ΔG, while rRSV was 100-fold attenuated compared to wild type virus. Upon single dose intranasal administration in cotton rats, both recombinant viruses developed high levels of neutralizing antibodies and conferred comparable long-lasting protection against RSV challenge; protection against replication in the lungs lasted at least 147 days and protection against pulmonary inflammation lasted at least 75 days.</p> <p>Conclusion</p> <p>Collectively, the data indicate that a single dose immunization with the highly attenuated ΔG as well as the attenuated rRSV conferred long term protection in the cotton rat against subsequent RSV challenge, without inducing vaccine enhanced pathology. Since ΔG is not likely to revert to a less attenuated phenotype, we plan to evaluate this deletion mutant further and to investigate its potential as a vaccine candidate against RSV infection.</p

    A Novel Inactivated Intranasal Respiratory Syncytial Virus Vaccine Promotes Viral Clearance without Th2 Associated Vaccine-Enhanced Disease

    Get PDF
    Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960's led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity. A safe and effective inactivated RSV vaccine would be of tremendous therapeutic benefit to many of these populations.In these preclinical studies, a mouse model was utilized to assess the efficacy of a novel, nanoemulsion-adjuvanted, inactivated mucosal RSV vaccine. Our results demonstrate that NE-RSV immunization induced durable, RSV-specific humoral responses, both systemically and in the lungs. Vaccinated mice exhibited increased protection against subsequent live viral challenge, which was associated with an enhanced Th1/Th17 response. In these studies, NE-RSV vaccinated mice displayed no evidence of Th2 mediated immunopotentiation, as has been previously described for other inactivated RSV vaccines.These studies indicate that nanoemulsion-based inactivated RSV vaccination can augment viral-specific immunity, decrease mucus production and increase viral clearance, without evidence of Th2 immune mediated pathology

    Oral tolerance inhibits pulmonary eosinophilia in a cockroach allergen induced model of asthma: a randomized laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen desensitization through oral tolerance is becoming an increasingly attractive treatment option for allergic diseases. However, the mechanism(s) by which tolerization is achieved remain poorly defined. In this study we endeavored to induce oral tolerance to cockroach allergen (CRA: a complex mixture of insect components) in order to ameliorate asthma-like, allergic pulmonary inflammation.</p> <p>Methods</p> <p>We compared the pulmonary inflammation of mice which had received four CRA feedings prior to intratracheal allergen sensitization and challenge to mice fed PBS on the same time course. Respiratory parameters were assessed by whole body unrestrained plethysmography and mechanical ventilation with forced oscillation. Bronchoalveolar lavage fluid (BAL) and lung homogenate (LH) were assessed for cytokines and chemokines by ELISA. BAL inflammatory cells were also collected and examined by light microscopy.</p> <p>Results</p> <p>CRA feeding prior to allergen sensitization and challenge led to a significant improvement in respiratory health. Airways hyperreactivity measured indirectly via enhanced pause (Penh) was meaningfully reduced in the CRA-fed mice compared to the PBS fed mice (2.3 ± 0.4 vs 3.9 ± 0.6; p = 0.03). Directly measured airways resistance confirmed this trend when comparing the CRA-fed to the PBS-fed animals (2.97 ± 0.98 vs 4.95 ± 1.41). This effect was not due to reduced traditional inflammatory cell chemotactic factors, Th2 or other cytokines and chemokines. The mechanism of improved respiratory health in the tolerized mice was due to significantly reduced eosinophil numbers in the bronchoalveolar lavage fluid (43300 ± 11445 vs 158786 ± 38908; p = 0.007) and eosinophil specific peroxidase activity in the lung homogenate (0.59 ± 0.13 vs 1.19 ± 0.19; p = 0.017). The decreased eosinophilia was likely the result of increased IL-10 in the lung homogenate of the tolerized mice (6320 ± 354 ng/mL vs 5190 ± 404 ng/mL, p = 0.02).</p> <p>Conclusion</p> <p>Our results show that oral tolerization to CRA can improve the respiratory health of experimental mice in a CRA-induced model of asthma-like pulmonary inflammation by reducing pulmonary eosinophilia.</p

    Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    Get PDF
    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FIRSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+ TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine- enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease
    corecore