62 research outputs found

    Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Get PDF
    Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG), a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers

    Triple negative breast cancer: Shedding light onto the role of pi3k/akt/mtor pathway

    Get PDF
    Breast cancer is one of the most widespread carcinoma and one of the main causes of cancer-related death worldwide, especially in women aged between 35 and 75 years. Among the different subtypes, triple negative breast cancer (TNBC) is characterized by the total absence of the estrogen-receptor (ER) and progesteron-receptor (PR) expression as well as the lack of human epidermal growth factor receptor 2 (HER2) overexpression or gene amplification. These biological characteristics confer to TNBC a higher aggressiveness and relapse risk along with poorer prognosis compared to other subtypes. Indeed, 5-years survival rate is still low and almost all patients die, despite any adjuvant treatment which at moment represents the heading pharmacological approach. To date, several clinical trials have been designed to investigate the potential role of some molecular markers, such as VEGF, EGFR, Src and mTOR, for targeted treatments in TNBC. In fact, many inhibitors of the PI3K/AKT/mTOR pathway, frequently de-regulated in TNBC, are acquiring a growing interest and several inhibitors are in preclinical development or already in early phase clinical trials. In this Review, we investigated the role of the PI3K/AKT/mTOR pathway in TNBC patients, by summarizing the molecular features that led to the distinction of different histotypes of TNBC. Furthermore, we provided an overview of the inhibition mechanisms of the mTOR and PI3K/AKT signaling pathways, highlighting the importance of integrating biological and clinical data for the development of mTOR inhibitors in order to implement targeted therapies for TNBC patients

    Dietary restriction: could it be considered as speed bump on tumor progression road?

    Get PDF
    Dietary restrictions, including fasting (or long-term starvation), calorie restriction (CR), and short-term starvation (STS), are considered a strong rationale that may protect against various diseases, including age-related diseases and cancer. Among dietary approaches, STS, in which food is not consumed during designed fasting periods but is typically not restricted during designated feeding periods, seems to be more suitable, because other dietary regimens involving prolonged fasting periods could worsen the health conditions of cancer patients, being they already naturally prone to weight loss. Until now, the limited amount of available data does not point to a single gene, pathway, or molecular mechanism underlying the benefits to the different dietary approaches. It is well known that the healthy effect is mediated in part by the reduction of nutrient-related pathways. The calorie restriction and starvation (long- and short-term) also suppress the inflammatory response reducing the expression, for example, of IL-10 and TNF-α, mitigating pro-inflammatory gene expression and increasing anti-inflammatory gene expression. The dietary restriction may regulate both genes involved in cellular proliferation and factors associated to apoptosis in normal and cancer cells. Finally, dietary restriction is an important tool that may influence the response to chemotherapy in preclinical models. However, further data are needed to correlate dietary approaches with chemotherapeutic treatments in human models. The aim of this review is to discuss the effects of various dietary approaches on the cancer progression and therapy response, mainly in preclinical models, describing some signaling pathways involved in these processes

    Kindler syndrome: extension of FERMT1 mutational spectrum and natural history

    Get PDF
    Mutations in the FERMT1 gene (also known as KIND1), encoding the focal adhesion protein kindlin-1, underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. Herein we review the clinical and genetic data of 62 patients, and delineate the natural history of the disorder, for example, age at onset of symptoms, or risk of malignancy. Although most mutations are predicted to lead to premature termination of translation, and to loss of kindlin-1 function, significant clinical variability is observed among patients. There is an association of FERMT1 missense and in-frame deletion mutations with milder disease phenotypes, and later onset of complications. Nevertheless, the clinical variability is not fully explained by genotype-phenotype correlations. Environmental factors and yet unidentified modifiers may play a role. Better understanding of the molecular pathogenesis of KS should enable the development of prevention strategies for disease complications.Contract grant sponsors: International Kindler Syndrome; The German Federal Ministry for Education and Research; The Excellence Initiative of the German federal and stage government and Freiburg Institute for Advanced Studies, School of Life Sciences (to L.B.T); The Italian Ministry of Heat

    A headlight on liquid biopsies: a challenging tool for breast cancer management

    Get PDF
    Breast cancer is the most frequent carcinoma and second most common cause of cancer-related mortality in postmenopausal women. The acquisition of somatic mutations represents the main mechanism through which cancer cells overcome physiological cellular signaling pathways (e.g., PI3K/Akt/mTOR, PTEN, TP53). To date, diagnosis and metastasis monitoring is mainly carried out through tissue biopsy and/or re-biopsy, a very invasive procedure limited only to certain locations and not always feasible in clinical practice. In order to improve disease monitoring over time and to avoid painful procedure such as tissue biopsy, liquid biopsy may represent a new precious tool. Indeed, it represents a basin of “new generation” biomarkers that are spread into the bloodstream from both primary and metastatic sites. Moreover, elevated concentrations of circulating tumor DNA (ctDNA) as well as circulating tumor cells (CTCs) have been found in blood plasma of patients with various tumor types. Nowadays, several new approaches have been introduced for the detection and characterization of CTCs and ctDNA, allowing a real-time monitoring of tumor evolution. This review is focused on the clinical relevance of liquid biopsy in breast cancer and will provide an update concerning CTCs and ctDNA utility as a tool for breast cancer patient monitoring during the course of disease

    Liquid biopsies in lung cancer: The new ambrosia of researchers

    Get PDF
    In the last decades the approach to cancer patient management has been deeply revolutionized. We are moving from a "one-fits-all" strategy to the "personalized medicine" based on the molecular characterization of the tumor. In this new era it is becoming more and more clear that the monitoring of the disease is fundamental for the success of the treatment, thus there is the need of new biomarker discovery. More precisely in the last years the scientific community has started to use the term "liquid biopsy". A liquid biopsy is a liquid biomarker that can be easily isolated from many body fluids (blood, saliva, urine, ascites, pleural effusion, etc.) and, as well as a tissue biopsy, a representative of the tissue from which it is spread. In this review we will focus our attention on circulating tumor cells, circulating tumor DNA, exosomes and secretomes with the aim to underlie their usefulness and potential application in a clinical setting for lung cancer patient management

    Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus

    Get PDF
    Genetic changes involved in the metaplastic progression from squamous esophageal mucosa toward Barrett's metaplasia and adenocarcinoma are almost unknown. Several evidences suggest that some miRNAs are differentially expressed in Barrett's esophagus (BE) and esophageal adenocarcinoma. Among these, miR-143, miR-145, miR-194, miR-203, miR-205, miR-215 appear to have a key role in metaplasia and neoplastic progression. The aim of this study was to analyze deregulated miRNAs in serum and esophageal mucosal tissue biopsies to identify new biomarkers that could be associated with different stages of esophageal disease. Esophageal mucosal tissue biopsies and blood samples were collected and analyzed for BE diagnosis. Quantitative Real-time PCR was used to compare miRNA expression levels in serum and 60 disease/ normal-paired tissues from 30 patients diagnosed with esophagitis, columnar-lined oesophagus (CLO) or BE. MiRNA expression analysis showed that miR-143, miR-145, miR-194 and miR-215 levels were significantly higher, while miR-203 and miR-205 were lower in BE tissues compared with their corresponding normal tissues. Esophageal mucosa analysis of patients with CLO and esophagitis showed that these miRNAs were similarly deregulated but to a lesser extent keeping the same trend and CLO appeared as intermediate step between esophagitis and BE. Analysis on circulating miRNA levels confirmed that miR-194 and miR-215 were significantly upregulated in both BE and CLO compared to esophagitis, while miR-143 was significantly upregulated only in the Barrett group. These findings suggest that miRNAs may be involved in neoplastic/ metaplastic progression and miRNA analysis might be useful for progression risk prediction as well as for monitoring of BE/CLO patients

    Non-Small Cell Lung Cancer Harboring Concurrent EGFR Genomic Alterations: A Systematic Review and Critical Appraisal of the Double Dilemma

    Get PDF
    The molecular pathways which promote lung cancer cell features have been broadly explored, leading to significant improvement in prognostic and diagnostic strategies. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have dramatically altered the treatment approach for patients with metastatic non-small cell lung cancer (NSCLC). Latest investigations by using next-generation sequencing (NGS) have shown that other oncogenic driver mutations, believed mutually exclusive for decades, could coexist in EGFR-mutated NSCLC patients. However, the exact clinical and pathological role of concomitant genomic aberrations needs to be investigated. In this systematic review, we aimed to summarize the recent data on the oncogenic role of concurrent genomic alterations, by specifically evaluating the characteristics, the pathological significance, and their potential impact on the treatment approach

    Immunotherapy: is a minor god yet in the pantheon of treatments for lung cancer?

    Get PDF
    Immunotherapy has been studied for many years in lung cancer without significant results, making the majority of oncologists quite skeptical about its possible application for non-small cell lung cancer treatment. However, the recent knowledge about immune escape and subsequent 'cancer immunoediting' has yielded the development of new strategies of cancer immunotherapy, heralding a new era of lung cancer treatment. Cancer vaccines, including both whole-cell and peptide vaccines have been tested both in early and advanced stages of non-small cell lung cancer. New immunomodulatory agents, including anti-CTLA4, anti-PD1/PDL1 monoclonal antibodies, have been investigated as monotherapy in metastatic lung cancer. To date, these treatments have shown impressive results of efficacy and tolerability in early clinical trials, leading to testing in several large, randomized Phase III trials. As these results will be confirmed, these drugs will be available in the near future, offering new exciting therapeutic options for lung cancer treatment
    • …
    corecore