10 research outputs found

    Analysis and performance assessment of the use of ammonia-based nano additive for lean combustion

    Get PDF
    In recent years, considerable progress has been made in exploring new applications of fuel additives to reduce emissions. Reduction of total nitrogen oxide (NOx) emissions can be achieved by decreasing the flame temperature by using fuel emulsified with water and/or using ammonia-based nano additives such as urea. The use of water as part of the hydrocarbon fuel is also one of the prospective directions in the development of new types of fuel systems. For the preparation of emulsified fuel, it is desirable to achieve greater stability of the emulsified fuel with minimum expenditure of chemicals and energy, so that the emulsified fuel can be used for a longer period. The paper analyzed the influence of nano-dispersed urea particles, water, and surfactant (Span 80/ Tween 80) on the combustion stability and emission characteristics of aviation fuel. The experimental campaign was conducted on a test stand (a 300kW liquid vortex combustor of 300 kW) consisting of a cylindrical combustion chamber with four optical windows and equipped with high-precision pressure sensors, thermocouples, and an exhaust gas analyzer for acquiring emissions. The experimental campaign was conducted at a constant fuel/air ratio (Φ). One of the main focus is related to the stability of the emulsion. Chemiluminescence imaging was performed to characterize the effects of the additive on flame emissions. In addition, a statistical and spectral analysis was performed using the pressure sensor for instability analysis. Exhaust gas analysis was performed both with the additive described above and without additive for a constant Φ condition. The analysis was performed for NOx, carbon monoxide (CO) and carbon dioxide (CO2) and oxygen (O 2)

    A Novel Hybrid Microdosimeter for Radiation Field Characterization Based on the Tissue Equivalent Proportional Counter Detector and Low Gain Avalanche Detectors Tracker: A Feasibility Study

    No full text
    In microdosimetry, lineal energies y are calculated from energy depositions ϵ inside the microdosimeter divided by the mean chord length, whose value is based on geometrical assumptions on both the detector and the radiation field. This work presents an innovative two-stages hybrid detector (HDM: hybrid detector for microdosimetry) composed by a tissue equivalent proportional counter and a silicon tracker made of 4 low gain avalanche diode. This design provides a direct measurement of energy deposition in tissue as well as particles tracking with a submillimeter lateral spatial resolution. The data collected by the detector allow to obtain the real track length traversed by each particle in the tissue equivalent proportional counter and thus estimates microdosimetry spectra without the mean chord length approximation. Using Geant4 toolkit, we investigated HDM performances in terms of detection and tracking efficiencies when placed in water and exposed to protons and carbon ions in the therapeutic energy range. The results indicate that the mean chord length approximation underestimate particles with short track, which often are characterized by a high energy deposition and thus can be biologically relevant. Tracking efficiency depends on the low gain avalanche diode configurations: 34 strips sensors have a higher detection efficiency but lower spatial resolution than 71 strips sensors. Further studies will be performed both with Geant4 and experimentally to optimize the detector design on the bases of the radiation field of interest.The main purpose of HDM is to improve the assessment of the radiation biological effectiveness via microdosimetric measurements, exploiting a new definition of the lineal energy (yT), defined as the energy deposition ϵ inside the microdosimeter divided by the real track length of the particle

    Applications of microbial fermentations for production of gluten-free products and perspectives

    No full text
    corecore