164 research outputs found

    Predicting In Vivo Efficacy of Potential Restenosis Therapies by Cell Culture Studies: Species-Dependent Susceptibility of Vascular Smooth Muscle Cells

    Get PDF
    Although drug-eluting stents (DES) are successfully utilized for restenosis therapy, the development of local and systemic therapeutic means including nanoparticles (NP) continues. Lack of correlation between in vitro and in vivo studies is one of the major drawbacks in developing new drug delivery systems. The present study was designed to examine the applicability of the arterial explant outgrowth model, and of smooth muscle cells (SMC) cultures for prescreening of possible drugs. Elucidation of different species sensitivity (rat, rabbit, porcine and human) to diverse drugs (tyrphostins, heparin and bisphsophonates) and a delivery system (nanoparticles) could provide a valuable screening tool for further in vivo studies. The anticipated sensitivity ranking from the explant outgrowth model and SMC mitotic rates (porcine>rat>>rabbit>human) do not correlate with the observed relative sensitivity of those animals to antiproliferative therapy in restenosis models (rat≥rabbit>porcine>human). Similarly, the inhibitory profile of the various antirestenotic drugs in SMC cultures (rabbit>porcine>rat>>human) do not correlate with animal studies, the rabbit- and porcine-derived SMC being highly sensitive. The validity of in vitro culture studies for the screening of controlled release delivery systems such as nanoparticles is limited. It is suggested that prescreening studies of possible drug candidates for restenosis therapy should include both SMC cell cultures of rat and human, appropriately designed with a suitable serum

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Animal cells reversibly permeable to small molecules

    No full text

    Heparin inhibits the motility and proliferation of human myometrial and leiomyoma smooth muscle cells

    No full text
    Uterine fibroids (leiomyomas) are a major women’s health problem. Currently, the standard for treatment remains hysterectomy, because no other treatment modalities can reduce both symptoms and recurrence. As leiomyomas are a hyperproliferation of smooth muscle cells, we sought to understand the regulation of uterine smooth muscle cell mitogenesis by the glycosaminoglycan heparin, which has been extensively studied as an anti-proliferative molecule in vascular smooth muscle cells. Using matched pairs of human myometrial and leiomyoma smooth muscle cells from the same uterus, we demonstrate that the proliferation and motility of both cell types are inhibited by heparin. We report that the decrease in cell number seen in the presence of heparin is not because of cell death. Interestingly, there is significant patient-to-patient variability in the proliferation response but not in the motility response to heparin. Furthermore, nonanticoagulant and anticoagulant heparin were equally effective at inhibiting leiomyoma and myometrial smooth muscle cell proliferation. These results warrant further investigation into the possibility that heparin might be useful in the treatment of uterine fibroids
    • …
    corecore