12 research outputs found

    Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human exposures to inorganic arsenic (iAs) have been linked to an increased risk of diabetes mellitus. Recent laboratory studies showed that methylated trivalent metabolites of iAs may play key roles in the diabetogenic effects of iAs. Our study examined associations between chronic exposure to iAs in drinking water, metabolism of iAs, and prevalence of diabetes in arsenicosis-endemic areas of Mexico.</p> <p>Methods</p> <p>We used fasting blood glucose (FBG), fasting plasma insulin (FPI), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR) to characterize diabetic individuals. Arsenic levels in drinking water and urine were determined to estimate exposure to iAs. Urinary concentrations of iAs and its trivalent and pentavalent methylated metabolites were measured to assess iAs metabolism. Associations between diabetes and iAs exposure or urinary metabolites of iAs were estimated by logistic regression with adjustment for age, sex, hypertension and obesity.</p> <p>Results</p> <p>The prevalence of diabetes was positively associated with iAs in drinking water (OR 1.13 per 10 ppb, p < 0.01) and with the concentration of dimethylarsinite (DMAs<sup>III</sup>) in urine (OR 1.24 per inter-quartile range, p = 0.05). Notably, FPI and HOMA-IR were negatively associated with iAs exposure (β -2.08 and -1.64, respectively, p < 0.01), suggesting that the mechanisms of iAs-induced diabetes differ from those underlying type-2 diabetes, which is typically characterized by insulin resistance.</p> <p>Conclusions</p> <p>Our study confirms a previously reported, but frequently questioned, association between exposure to iAs and diabetes, and is the first to link the risk of diabetes to the production of one of the most toxic metabolites of iAs, DMAs<sup>III</sup>.</p

    Interplay between gut microbiota metabolism and inflammation in HIV infection

    No full text
    HIV infection causes a disruption of gut-associated lymphoid tissue, driving a shift in the composition of gut microbiota. A deeper understanding of the metabolic changes and how they affect the interplay with the host is needed. Here, we assessed functional modifications of HIV-associated microbiota by combining metagenomic and metatranscriptomic analyses. The transcriptionally active microbiota was well-adapted to the inflamed environment, overexpressing pathways related to resistance to oxidative stress. Furthermore, gut inflammation was maintained by the Gram-negative nature of the HIV-associated microbiota and underexpression of anti-inflammatory processes, such as short chain fatty acid biosynthesis or indole production. We performed co-occurrence and metabolic network analyses that showed relevance in the microbiota structure of both taxonomic and metabolic HIV-associated biomarkers. The Bayesian network revealed the most determinant pathways for maintaining the structure stability of the bacterial community. In addition, we identified the taxa's contribution to metabolic activities and their interactions with host health.This work was supported by grants to AM from the Spanish Ministry of Economy and Competitiveness (projects SAF 2012-31187, SAF2013-49788-EXP, and SAF2015-65878-R), the Carlos III Institute of Health (projects PIE14/00045 and AC15/00022), and the Generalitat Valenciana (project PrometeoII/2014/065) and was co-financed by FEDER. This work was supported by the Instituto de Salud Carlos III (Plan Estatal de IþDþi 2013–2016, project PI15/00345 and the Spanish AIDS Research Network (RD16/0025/0001 project) and co-financed by the European Development Regional Fund “A way to achieve Europe” (ERDF). JFV-C was supported by a CONACYT-SECITI fellowship, México. C.B.; DR and MF were funded by the Spanish Ministry of Economy and Competitiveness (CTQ2014-55279-R and BIO2014- 54494-R). SSV was supported by a grant from the Spanish Ministry of Science and Innovation (Contratos Juan Rodés, ECC/1051/2013). SM was funded by the Hospital Universitario Ramón y Cajal. VE was funded by the Hospital Clínico San Carlos. MJG was supported by a grant from the Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) (UGP-14-116).Peer reviewe
    corecore