4 research outputs found
Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework
Metal–organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare. The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite significant progress of these components made in recent years. Here we report the synthesis and properties of a new highly crystalline, electrochemically active, cobalt and naphthalene diimide-based MOF that is an efficient electrical semiconductor and has a broad absorption spectrum, from 300 to 2500 nm. Its semiconductivity was determined by direct voltage bias using a four-point device, and it features a wavelength dependant photoconductive–photoresistive dual behaviour, with a very high responsivity of 2.5 × 105 A W−1
Coordination polymers based on cobalt(II) and N,N\'-bis(4-pyridyl)-1,4,5,8-naphthalene diimide as ligand and their structural, spectroscopic and electronic properties
PolÃmeros de coordenação têm atraÃdo a atenção de pesquisadores na última década por conta de sua incrÃvel versatilidade e virtualmente infinito número de possibilidades de combinação de ligantes orgânicos e centros metálicos. Estes compostos normalmente herdam as caracterÃsticas magnéticas, eletrônicas e espectroscópicas de seus componentes base. Entretanto, apesar do crescente número de trabalhos na área, ainda são raros os polÃmeros de coordenação que apresentem condutividade elétrica. Para este fim, utilizou-se a N,N\'-bis(4-piridil)-1,4,5,8-naftaleno diimida, ou NDI-py, que pertence a uma classe de compostos rÃgidos, planares, quimicamente e termicamente estáveis e que já foram extensamente estudados por suas propriedades fotoeletroquÃmicas e semicondução do tipo n. O primeiro polÃmero de coordenação sintetizado, MOF-CoNDI-py-1, indicou ser um polÃmero linear, de estrutura 1D. O segundo, MOF-CoNDI-py-2, que conta com ácido tereftálico como ligante suporte, é um sólido cristalino com cela unitária monoclÃnica pertencente ao grupo espacial C2/c, determinado por difração de raios-X de monocristal. A rede apresenta um arranjo trinuclear de Ãons Co(II) alto spin com coordenados em uma geometria de octaedro distorcido, enquanto os ligantes NDI-py se encontram em um arranjo paralelo na estrutura, em distâncias apropriadas para transferência eletrônica. Com o auxÃlio de cálculo teóricos a nÃvel de DFT, foi realizado um estudo aprofundado dos espectros eletrônicos e vibracionais, com atribuição das transições observadas, tanto para o MOF-CoNDI-py-2 quanto para o ligante NDI-py livre. A rede de coordenação absorve em toda a região do espectro eletrônico analisada, de 200 nm a 2500 nm, além de apresentar luminescência com caracterÃstica do ligante. Dispositivos eletrônicos fabricados com um cristal do MOF-CoNDI-py-2 revelaram condutividades da ordem de 7,9 10-3 S cm -1, a maior já observada para um MOF. Além de elevada, a condutividade elétrica dos cristais demonstrou-se altamente anisotrópica, sendo significativamente menos condutor em algumas direções. Os perfis de corrente versus voltagem foram analisados em termos de mecanismos de condutividade, sendo melhores descritos por um mecanismo limitado pelo eletrodo to tipo Space-Charge Limited Current, concordando com a proposta de condutividade através dos planos de NDI-py na rede. A condutividade dos cristais também é fortemente dependente de luz, apresentando fotocondução quando irradiado por um laser vermelho, de 632 nm, enquanto apresenta um comportamento fotorresistivo frente a uma fonte de luz branca. Estes resultados, combinados, trazem um MOF em uma estrutura incomum e com elevada condutividade elétrica, modulada por luz, em medidas diretas de corrente. Não existem exemplos conhecidos de MOFs na literatura com estas caracterÃsticas.Coordination polymers have been a major topic in materials science during the past decade, thanks to their versatility and virtually infinite possible combinations between metal centers and organic ligands. These coordination polymers usually inherit the properties of their components, such as magnetic, spectroscopic and electronic characteristics. However, despite the increasing number of research papers in this topic, it is still hard to find coordination polymers featuring electronic conductivity. To achieve that, we used a naphthalene diimide derivative, N,N\'-bis(4-pyridyl)-1,4,5,8- naphthalene diimide or NDI-py, which belongs to a class of rigid, planar, thermally and chemically stable compounds, extensively studied due to their photoelectrochemical properties and their n-type semiconductivity. The first coordination polymer synthesised, MOF-CoNDI-py-1, was an amorphous linear polymer, with a 1D structure. Based on these observations, MOF-CoNDI-py-2 was synthesised by using terephthalic acid as a supporting ligand, and it is a crystalline solid which its monoclinic unit cell belongs to a C2/c space group, as determined by single crystal X-ray diffraction. This network features a trinuclear high-spin Co(II) unit, and each metal ion sits on a distorted octahedra coordination geometry, while the NDI-py ligands sit in a parallel arrangement, with distances suitable for electronic transfers. A detailed study of their vibrational and electronic spectra, supported by DFT calculations, was performed, as well as a full description and assignment of the observed bands. MOF-CoNDI-py-2 absorbs in the whole studied spectral region, from 200 nm to 2500 nm, while it also features a ligand-centered emission spectrum. Electronic devices built around its crystals revealed electric conductivities of 7.9 10 -3 S cm -1, which is, to the best of our knowledge, the highest for a MOF to this date. This conductivity is also highly anisotropic, being significantly less conductive in certain directions. The current versus voltage profiles were analysed in terms of known conduction mechanisms, with best fits when using an electrode-limited Space-Charge Limited Current mechanism, in agreement with the proposition that this conductivity happens through the NDI-py stacking planes. Additionally, this mechanism is influenced by an external light source, being a photoconductor with a red laser, 632 nm, and a photoresistor with a white light. Combined, these results bring a light-modulated, highly conductive MOF material with an unusual structure. As far as we know, there are no similar MOFs in the literature, which makes MOF-CoNDI-py-2 one of a kind
Self-assembled naphthalenediimide derivative films for light-assisted electrochemical reduction of oxygen
This naphthalene diimide derivative, DC18, forms highly conjugated semiconducting stacked assemblies over electrodes after electrochemical conditioning. These molecular materials are very efficient towards electrochemical photoreduction of oxygen under visible light.CAPE
A Micro-Centrifugal Technique for Improved Assessment and Optimization of Nanomaterial Dispersions: The Case for Carbon Nanotubes
Large-scale incorporation of nanomaterials into manufactured materials can only take place if they are suitably dispersed and mobile within the constituent components, typically within a solution/ink formulation so that the additive process can commence. Natural hydrophobicity of many nanomaterials must be overcome for their successful incorporation into any solution-based manufacturing process. To date, this has been typically achieved using polymers or surfactants, rather than chemical functionalization, to preserve the remarkable properties of the nanomaterials. Quantifying surfactant or dispersion technique efficacy has been challenging. Here we introduce a new methodology to quantify dispersions applicable to high-weight fraction suspensions of most nanomaterials. It’s based on centrifuging and weighing residue of undispersed material. This enables the determination of the efficacy of surfactants to disperse nanomaterials (e.g. ultrasonication power and duration) and leads to increased nanomaterial solution loading. To demonstrate this technique, we assessed carbon nanotube dispersions using popular surfactants: Benzalkonium chloride (ADBAC), Brij®52, Brij®58, Pluronic®F127, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), Triton™ X-100, Triton™X-405 and Tween®80, evaluating the dispersion outcome when varying sonicator power and horn depth, as well as imaging sono-intensity within the solution with luminol. The methodology is shown to be applicable for high-weight fraction nanomaterial suspensions, enabling greater deployment