12 research outputs found

    Incorporación de información blanda para la cuantificación de la incertidumbre: Aplicación a la hidrogeología

    Full text link
    Esta tesis con un importante aspecto relacionado con la construcción de modelos numéricos para la simulación de flujo de agua subterránea y el transporte de masa en acuíferos heterogéneos: la integración de toda la información disponible teniendo en cuenta su grado de confianza y su procedencia para la caracterización del medio físico. Esta integración está orientada a la cuantificación yreducción de la incertidumbre en las predicciones realizadas a partir de modelos numéricos. Una de las fuentes más importantes de información la constituyen los reconocimientos geofísicos. En esta tesis se describen la naturaleza y los princiios de los métodos geofísicos con énfasis en aquellas aplicaciones capaces de recabar información útil para la caracterización didrogeológica del terreno. Se revisan las relaciones establecidas por distintos investigadores entre los principales parámetros geoeléctiros y geossismicos con los hidrogeológicos. Posteriormente las técnicas geoestadísticas para combinar información son revisadas con cierto detalle. Dos ejemplos ilustran su comportamiento al aplicarlas a un caso real. De entre los algoritmos geoestadísticos de representación estocástica el de simulación por campos de probabilidad es revisado en detalle, desarrollándose su implementación en el ámbito multivariado. Finalmente se presenta un nuevo algoritmo de sumulación estocástica que permite la integración de información cuyo volumen de soporte es diferente. Los campos generados por medio de esta nueva técnica tienen la propiedad de que los valores y los patrones de continuidad de las variables representadas están linealmente relacionados.Cassiraga ., EF. (1999). Incorporación de información blanda para la cuantificación de la incertidumbre: Aplicación a la hidrogeología [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4503Palanci

    BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills

    Full text link
    [EN] This paper introduces BIOLEACH, a new decision support model for the real-time management of municipal solid waste bioreactor landfills that allows estimating the leachate and biogas production. Leachate production is estimated using an adaptation of the water balance equation which considers every hydrological component and the water consumed by anaerobic organic matter degradation to create biogas and the leachate recirculation flows pumped from the landfill pond under a bioreactor management scheme. Landfill gas production is estimated considering the leachate formation process as a coupled effect through the production or consumption of water. BIOLEACH uses waste production and climate data at monthly scale and computes leachate production accounting for the actual conditions inside the waste mass. Biogas production is computed simultaneously, considering the available water to adjust the chemical organic matter biodegradation. BIOLEACH is a valuable bioreactor managing tool as it allows calculating the recirculation volume of leachate that ensures optimal moisture conditions inside the waste mass and therefore maximizing biogas production. As an illustrative example of a BIOLEACH application, the model has been applied to a real landfill located in Murcia Region (Spain) showing the economic and environmental benefits derived from leachate superficial recirculation.Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.; Cassiraga, EF. (2020). BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills. International Journal of Environmental research and Public Health. 17(5):1-24. https://doi.org/10.3390/ijerph17051675S124175Abd El-Salam, M. M., & I. Abu-Zuid, G. (2015). Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of Advanced Research, 6(4), 579-586. doi:10.1016/j.jare.2014.02.003Scaglia, B., Confalonieri, R., D’Imporzano, G., & Adani, F. (2010). Estimating biogas production of biologically treated municipal solid waste. Bioresource Technology, 101(3), 945-952. doi:10.1016/j.biortech.2009.08.085GARCIADECORTAZAR, A., & MONZON, I. (2007). MODUELO 2: A new version of an integrated simulation model for municipal solid waste landfills. Environmental Modelling & Software, 22(1), 59-72. doi:10.1016/j.envsoft.2005.11.003Manna, L., Zanetti, M. C., & Genon, G. (1999). Modeling biogas production at landfill site. Resources, Conservation and Recycling, 26(1), 1-14. doi:10.1016/s0921-3449(98)00049-4Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology, 32(4), 297-336. doi:10.1080/10643380290813462Omar, H., & Rohani, S. (2015). Treatment of landfill waste, leachate and landfill gas: A review. Frontiers of Chemical Science and Engineering, 9(1), 15-32. doi:10.1007/s11705-015-1501-yMambeli Barros, R., Tiago Filho, G. L., & da Silva, T. R. (2014). The electric energy potential of landfill biogas in Brazil. Energy Policy, 65, 150-164. doi:10.1016/j.enpol.2013.10.028Broun, R., & Sattler, M. (2016). A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. Journal of Cleaner Production, 112, 2664-2673. doi:10.1016/j.jclepro.2015.10.010Warith, M. (2002). Bioreactor landfills: experimental and field results. Waste Management, 22(1), 7-17. doi:10.1016/s0956-053x(01)00014-9Reinhart, D. R., McCreanor, P. T., & Townsend, T. (2002). The bioreactor landfill: Its status and future. Waste Management & Research: The Journal for a Sustainable Circular Economy, 20(2), 172-186. doi:10.1177/0734242x0202000209Aguilar-Virgen, Q., Taboada-González, P., Ojeda-Benítez, S., & Cruz-Sotelo, S. (2014). Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters. Renewable and Sustainable Energy Reviews, 30, 412-419. doi:10.1016/j.rser.2013.10.014Ménard, J.-F., Lesage, P., Deschênes, L., & Samson, R. (2004). Comparative life cycle assessment of two landfill technologies for the treatment of municipal solid waste. The International Journal of Life Cycle Assessment, 9(6), 371-378. doi:10.1007/bf02979080Niskanen, A., Värri, H., Havukainen, J., Uusitalo, V., & Horttanainen, M. (2013). Enhancing landfill gas recovery. Journal of Cleaner Production, 55, 67-71. doi:10.1016/j.jclepro.2012.05.042Khire, M. V., & Mukherjee, M. (2007). Leachate injection using vertical wells in bioreactor landfills. Waste Management, 27(9), 1233-1247. doi:10.1016/j.wasman.2006.07.010Jain, P., Townsend, T. G., & Tolaymat, T. M. (2010). Steady-state design of vertical wells for liquids addition at bioreactor landfills. Waste Management, 30(11), 2022-2029. doi:10.1016/j.wasman.2010.02.020Feng, S.-J., Cao, B.-Y., & Xie, H.-J. (2017). Modeling of Leachate Recirculation Using Spraying–Vertical Well Systems in Bioreactor Landfills. International Journal of Geomechanics, 17(7), 04017012. doi:10.1061/(asce)gm.1943-5622.0000887Haydar, M. M., & Khire, M. V. (2005). Leachate Recirculation Using Horizontal Trenches in Bioreactor Landfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(7), 837-847. doi:10.1061/(asce)1090-0241(2005)131:7(837)Reddy, K. R., Giri, R. K., & Kulkarni, H. S. (2015). Design of horizontal trenches for leachate recirculation in bioreactor landfills using two-phase modelling. International Journal of Environment and Waste Management, 15(4), 347. doi:10.1504/ijewm.2015.069962Reddy, K. R., Giri, R. K., & Kulkarni, H. S. (2014). Two-Phase Modeling of Leachate Recirculation Using Drainage Blankets in Bioreactor Landfills. Environmental Modeling & Assessment, 20(5), 475-490. doi:10.1007/s10666-014-9435-1Haydar, M. M., & Khire, M. V. (2007). Leachate Recirculation Using Permeable Blankets in Engineered Landfills. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 360-371. doi:10.1061/(asce)1090-0241(2007)133:4(360)Moody, C. M., & Townsend, T. G. (2017). A comparison of landfill leachates based on waste composition. Waste Management, 63, 267-274. doi:10.1016/j.wasman.2016.09.020Grugnaletti, M., Pantini, S., Verginelli, I., & Lombardi, F. (2016). An easy-to-use tool for the evaluation of leachate production at landfill sites. Waste Management, 55, 204-219. doi:10.1016/j.wasman.2016.03.030Laner, D., Crest, M., Scharff, H., Morris, J. W. F., & Barlaz, M. A. (2012). A review of approaches for the long-term management of municipal solid waste landfills. Waste Management, 32(3), 498-512. doi:10.1016/j.wasman.2011.11.010Kumar, S., Chiemchaisri, C., & Mudhoo, A. (2010). Bioreactor landfill technology in municipal solid waste treatment: An overview. Critical Reviews in Biotechnology, 31(1), 77-97. doi:10.3109/07388551.2010.49220

    Assessment of Groundwater Contamination by Terbuthylazine Using Vadose Zone Numerical Models. Case Study of Valencia Province (Spain)

    Full text link
    [EN] Terbuthylazine is commonly used as an herbicide to control weeds and prevent non-desirable grow of algae, fungi and bacteria in many agricultural applications. Despite its highly negative effects on human health, environmental modeling of this kind of pesticide in the vadose zone till reaching groundwater is still not being done on a regular basis. This work shows results obtained by two mathematical models (PESTAN and PRZM-GW) to explain terbuthylazine behavior in the non-saturated zone of a vertical soil column. One of the models use a one-dimensional analytical formulation to simulate the movement of terbuthylazine through the non-saturated soil to the phreatic surface. The second and more complex model uses a whole set of parameters to solve a modified version of the mass transport equation considering the combined effect of advection, dispersion and reactive transport processes. Both models have been applied as a case-study on a particular location in South Valencia Aquifer (Spain). A whole set of simulation scenarios have been designed to perform a parameter sensitivity analysis. Despite both models leading to terbuthylazine¿s concentration values, numerical simulations show that PRZM-GW is able to reproduce concentration observations leading to much more accurately results than those obtained using PESTAN.Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.; Cassiraga, EF.; Ballesteros-Almonacid, L. (2020). Assessment of Groundwater Contamination by Terbuthylazine Using Vadose Zone Numerical Models. Case Study of Valencia Province (Spain). International Journal of Environmental research and Public Health. 17(9):1-17. https://doi.org/10.3390/ijerph17093280S117179University of Hertfordshirehttps://sitem.herts.ac.uk/aeru/footprint/es/Reports/623.htmBrusseau, M. L., Rao, P. S. C., & Gillham, R. W. (1989). Sorption nonideality during organic contaminant transport in porous media. Critical Reviews in Environmental Control, 19(1), 33-99. doi:10.1080/10643388909388358Brusseau, M. L., & Rao, P. S. C. (1991). Influence of sorbate structure on nonequilibrium sorption of organic compounds. Environmental Science & Technology, 25(8), 1501-1506. doi:10.1021/es00020a022Brusseau, M. L., & Reid, M. E. (1991). Nonequilibrium sorption of organic chemicals by low organic-carbon aquifer materials. Chemosphere, 22(3-4), 341-350. doi:10.1016/0045-6535(91)90322-5Brusseau, M. L., Jessup, R. E., & Rao, P. S. C. (1989). Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resources Research, 25(9), 1971-1988. doi:10.1029/wr025i009p01971Francaviglia, R., Capri, E., Klein, M., Hosang, J., Aden, K., Trevisan, M., & Errera, G. (2000). Comparing and evaluating pesticide leaching models: results for the Tor Mancina data set (Italy). Agricultural Water Management, 44(1-3), 135-151. doi:10.1016/s0378-3774(99)00089-xFrancaviglia, R., & Capri, E. (2000). Lysimeter experiments with metolachlor in Tor Mancina (Italy). Agricultural Water Management, 44(1-3), 63-74. doi:10.1016/s0378-3774(99)00084-

    Numerical Modeling of Groundwater Pollution by Chlorpyrifos, Bromacil and Terbuthylazine. Application to the Buñol-Cheste Aquifer (Spain)

    Full text link
    [EN] Chlorpyrifos, Bromacil and Terbuthylazine are commonly used as insecticides and herbicides to control weeds and prevent non-desirable growth of algae, fungi and bacteria in many agricultural applications. Despite their highly negative effects on human health, environmental modeling of these pesticides in the vadose zone until they reach groundwater is still not being conducted on a regular basis. This work shows results obtained by version 5.08 of the Pesticide Root Zone Model (PRZM5) numerical model to simulate the fate and transport of Chlorpyrifos, Bromacil and Terbuthylazine between 2006 and 2018 inside the Buñol-Cheste aquifer in Spain. The model uses a whole set of parameters to solve a modified version of the mass transport equation considering the combined effect of advection, dispersion and reactive transport processes. The simulation process was designed for a set of twelve scenarios considering four application doses for each pesticide. Results show that the maximum concentration value for every scenario exceeds the current Spanish Maximum Concentration Limit (0.1 ¿g/L). Numerical simulations were able to reproduce concentration observations over time despite the limited amount of available data.Pérez-Indoval, R.; Rodrigo-Ilarri, J.; Cassiraga, EF.; Rodrigo-Clavero, M. (2021). Numerical Modeling of Groundwater Pollution by Chlorpyrifos, Bromacil and Terbuthylazine. Application to the Buñol-Cheste Aquifer (Spain). International Journal of Environmental research and Public Health (Online). 18(7):1-21. https://doi.org/10.3390/ijerph18073511S12118

    Advances in implementing Strategic Environmental Assessment (SEA) techniques in Central America and the Caribbean

    Full text link
    [EN] The use of Strategic Environmental Assessment (SEA) systems is essential to ensure the sustainability of plans, programs and policies. This works shows, for the first time in the scientific literature, a joint vision of the current situation of SEA systems in Costa Rica, El Salvador, Guatemala, Panama and the Dominican Republic. The analysis has been performed using data collected from an exhaustive review of the pre-existing literature and specific information obtained from personal interviews carried out during the SEA forum held in Bogota in 2018. Legal mechanisms in the Central American and Caribbean region reveal that specific regulation is not necessary to apply and develop SEA systems. Little experience in SEA development in the region is evidenced in the absence of SEA methodologies adapted to the different contexts of policies, plans, programs and governance circumstances. SEA results' dissemination procedures have been performed only in El Salvador and Costa Rica. Besides, results show that no monitoring mechanisms for the programs implemented under SEA processes have been applied to date. To ensure the future development of SEA processes in the region under sustainable criteria, it is essential to ensure the support of decision makers so that plans and policies can be properly adapted.Rodrigo-Ilarri, J.; González-González, L.; Rodrigo-Clavero, M.; Cassiraga, EF. (2020). Advances in implementing Strategic Environmental Assessment (SEA) techniques in Central America and the Caribbean. Sustainability. 12(10):1-17. https://doi.org/10.3390/su12104039S1171210Victor, D., & Agamuthu, P. (2014). Policy trends of strategic environmental assessment in Asia. Environmental Science & Policy, 41, 63-76. doi:10.1016/j.envsci.2014.03.005Brown, A. L., & Thérivel, R. (2000). Principles to guide the development of strategic environmental assessment methodology. Impact Assessment and Project Appraisal, 18(3), 183-189. doi:10.3152/147154600781767385Fundingsland Tetlow, M., & Hanusch, M. (2012). Strategic environmental assessment: the state of the art. Impact Assessment and Project Appraisal, 30(1), 15-24. doi:10.1080/14615517.2012.666400White, L., & Noble, B. F. (2013). Strategic environmental assessment for sustainability: A review of a decade of academic research. Environmental Impact Assessment Review, 42, 60-66. doi:10.1016/j.eiar.2012.10.003Unalan, D., & Cowell, R. (2009). Adoption of the EU SEA Directive in Turkey. Environmental Impact Assessment Review, 29(4), 243-251. doi:10.1016/j.eiar.2008.11.003Geneletti, D. (2011). Reasons and options for integrating ecosystem services in strategic environmental assessment of spatial planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 7(3), 143-149. doi:10.1080/21513732.2011.617711Ramos, T. B., Montaño, M., Joanaz de Melo, J., Souza, M. P., Lemos, C. C. de, Domingues, A. R., & Polido, A. (2015). Strategic Environmental Assessment in higher education: Portuguese and Brazilian cases. Journal of Cleaner Production, 106, 222-228. doi:10.1016/j.jclepro.2014.12.088Alshuwaikhat, H. M. (2005). Strategic environmental assessment can help solve environmental impact assessment failures in developing countries. Environmental Impact Assessment Review, 25(4), 307-317. doi:10.1016/j.eiar.2004.09.003Noble, B., & Nwanekezie, K. (2017). Conceptualizing strategic environmental assessment: Principles, approaches and research directions. Environmental Impact Assessment Review, 62, 165-173. doi:10.1016/j.eiar.2016.03.005MARGATO, V., & SÁNCHEZ, L. E. (2014). QUALITY AND OUTCOMES: A CRITICAL REVIEW OF STRATEGIC ENVIRONMENTAL ASSESSMENT IN BRAZIL. Journal of Environmental Assessment Policy and Management, 16(02), 1450011. doi:10.1142/s1464333214500112Rozas-Vásquez, D., & Gutiérrez, P. (2018). Advances and challenges in the implementation of strategic environmental assessment in Chile. Impact Assessment and Project Appraisal, 36(5), 425-428. doi:10.1080/14615517.2018.1490048Biehl, J., Köppel, J., Rodorff, V., Huesca Pérez, M. E., Zimmermann, A., Geißler, G., & Rehhausen, A. (2019). Implementing strategic environmental assessment in countries of the global South – An analysis within the Peruvian context. Environmental Impact Assessment Review, 77, 23-39. doi:10.1016/j.eiar.2019.02.009Sánchez, L. E., & Silva-Sánchez, S. S. (2008). Tiering strategic environmental assessment and project environmental impact assessment in highway planning in São Paulo, Brazil. Environmental Impact Assessment Review, 28(7), 515-522. doi:10.1016/j.eiar.2008.02.001MONTAÑO, M., OPPERMANN, P., MALVESTIO, A. C., & SOUZA, M. P. (2014). CURRENT STATE OF THE SEA SYSTEM IN BRAZIL: A COMPARATIVE STUDY. Journal of Environmental Assessment Policy and Management, 16(02), 1450022. doi:10.1142/s1464333214500227Sistema de la Integración de Centroaméricawww.sica.intVerheem, R. A. A., & Tonk, J. A. M. N. (2000). Strategic environmental assessment: one concept, multiple forms. Impact Assessment and Project Appraisal, 18(3), 177-182. doi:10.3152/147154600781767411Van Doren, D., Driessen, P. P. J., Schijf, B., & Runhaar, H. A. C. (2013). Evaluating the substantive effectiveness of SEA: Towards a better understanding. Environmental Impact Assessment Review, 38, 120-130. doi:10.1016/j.eiar.2012.07.002Stoeglehner, G., Brown, A. L., & Kørnøv, L. B. (2009). SEA and planning: ‘ownership’ of strategic environmental assessment by the planners is the key to its effectiveness. Impact Assessment and Project Appraisal, 27(2), 111-120. doi:10.3152/146155109x438742Acharibasam, J. B., & Noble, B. F. (2014). Assessing the impact of strategic environmental assessment. Impact Assessment and Project Appraisal, 32(3), 177-187. doi:10.1080/14615517.2014.927557Cherp, A. (2001). Environmental assessment in countries in transition: Evolution in a changing context. Journal of Environmental Management, 62(4), 357-374. doi:10.1006/jema.2001.043

    Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics

    Get PDF
    [EN] Automatic interpolation of precipitation maps combining rain gauge and radar data has been done in the past but considering only the data collected at a given time interval. Since radar and rain gauge data are collected at short intervals, a natural extension of previous works is to account for temporal correlations and to include time into the interpolation process. In this work, rainfall is interpolated using data from the current time interval and the previous one. Interpolation is carried out using kriging with external drift, in which the radar rainfall estimate is the drift, and the mean precipitation is set to zero at the locations where the radar estimate is zero. The rainfall covariance is modeled as non-stationary in time, and the space system of reference moves with the storm. This movement serves to maximize the collocated correlation between consecutive time intervals. The proposed approach is analyzed for four episodes that took place in Catalonia (Spain). It is compared with three other approaches: (i) radar estimation, (ii) kriging with external drift using only the data from the same time interval, and (iii) kriging with external drift using data from two consecutive time intervals but not accounting for the displacement of the storm. The comparisons are performed using cross-validation. In all four episodes, the proposed approach outperforms the other three approaches. It is important to account for temporal correlation and use a Lagrangian system of coordinates that tracks the rainfall movement.This work has been done in the framework of the Spanish Project FFHazF (CGL2014-60700) and the EC H2020 project ANYWHERE (DRS-1-2015-700099). Thanks are due to the Meteorological Service of Catalonia for providing the radar and rain gauges data used here.Cassiraga, EF.; Gómez-Hernández, JJ.; Berenguer, M.; Sempere-Torres, D.; Rodrigo-Ilarri, J. (2021). Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics. Mathematical Geosciences. 53(4):499-516. https://doi.org/10.1007/s11004-020-09882-1S499516534Aran M, Amaro J, Arús J, Bech J, Figuerola F, Gayà M, Vilaclara E (2009) Synoptic and mesoscale diagnosis of a tornado event in Castellcir, Catalonia, on 18th October 2006. Atmos Res 93:147–160Azimi-Zonooz A, Krajewski W, Bowles D, Seo D (1989) Spatial rainfall estimation by linear and non-linear co-kriging of radar-rainfall and raingage data. Stoch Hydrol Hydraul 3:51–67Bech J, Pascual R, Rigo T, Pineda N, López J, Arús J, Gayá M (2007) An observational study of the 7 September 2005 Barcelona Tornado outbreak. Nat Hazards Earth Syst Sci 7:129–139Bech J, Pineda N, Rigo T, Aran M, Amaro J, Gayà M, Arús J, Montanyà J, van der Velde O (2011) A mediterranean nocturnal heavy rainfall and tornadic event. Part I: overview, damage survey and radar analysis. Atmos Res 100:621–637Berenguer M, Sempere-Torres D, Pegram GG (2011) Sbmcast-an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J Hydrol 404:226–240Berenguer M, Sempere-Torres D, Hürlimann M (2015) Debris-flow forecasting at regional scale by combining susceptibility mapping and radar rainfall. Nat Hazards Earth Syst Sci 15:587–602Bochner S (1949) Fourier transforms. Princeton University Press, London, p 219Brown PE, Diggle PJ, Lord ME, Young PC (2001) Space–time calibration of radar rainfall data. J R Stat Soc Ser C 50:221–241Calheiros R, Zawadzki I (1987) Reflectivity-rain rate relationships for radar hydrology in Brazil. J Climate Appl Meteorol 26:118–132Chumchean S, Seed A, Sharma A (2006) Correcting of real-time radar rainfall bias using a Kalman filtering approach. J Hydrol 317:123–137Corral C, Velasco D, Forcadell D, Sempere-Torres D, Velasco E (2009) Advances in radar-based flood warning systems. the EHIMI system and the experience in the Besòs flash-flood pilot basinCreutin J, Delrieu G, Lebel T (1988) Rain measurement by raingage-radar combination: a geostatistical approach. J Atmos Ocean Technol 5:102–115Delrieu G, Annette W, Brice B, Dominique F, Laurent B, Pierre-Emmanuel K (2014) Geostatistical radar-raingauge merging: a novel method for the quantification of rain estimation accuracy. Adv Water Resour 71:110–124Deutsch C (1991) The relationship between universal kriging, kriging with an external drift and cokriging. SCRF report 4Germann U, Turner B, Zawadzki I (2006) Predictability of precipitation from continental radar images. Part IV: limits to prediction. J Atmos Sci 63:2092–2108Goudenhoofdt E, Delobbe L (2009) Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol Earth Syst Sci 13:195–203Harrold T, Austin P (1974) The structure of precipitation systems—a review. J Rech Atmos 8:41–57Hevesi JA, Istok JD, Flint AL (1992a) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. J Appl Meteorol 31:661–676Hevesi JA, Istok JD, Flint AL (1992b) Precipitation estimation in mountanious terrain using multivariate geostatistics. Part II: isohyetal maps. J Appl Meteorol 31:677–688Jewell SA, Gaussiat N (2015) An assessment of kriging-based rain-gauge-radar merging techniques. Q J R Meteorol Soc 141:2300–2313Journel AG, Rossi M (1989) When do we need a trend model in kriging? Math Geol 21:715–739Krajewski WF (1987) Cokriging radar-rainfall and rain gage data. J Geophys Res Atmos 92:9571–9580Mateo J, Ballart D, Brucet C, Aran M, Bech J (2009) A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia. Atmos Res 93:131–146Pulkkinen S, Koistinen J, Kuitunen T, Harri AM (2016) Probabilistic radar-gauge merging by multivariate spatiotemporal techniques. J Hydrol 542:662–678Rinehart R, Garvey E (1978) Three-dimensional storm motion detection by conventional weather radar. Nature 273:287Rosenfeld D, Wolff DB, Atlas D (1993) General probability-matched relations between radar reflectivity and rain rate. J Appl Meteorol 32:50–72Rosenfeld D, Wolff DB, Amitai E (1994) The window probability matching method for rainfall measurements with radar. J Appl Meteorol 33:682–693Rosenfeld D, Amitai E, Wolff DB (1995) Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. J Appl Meteorol 34:212–223Sempere-Torres D, Corral C, Raso J, Malgrat P (1999) Use of weather radar for combined sewer overflows monitoring and control. J Environ Eng 125:372–380Seo DJ (1998) Real-time estimation of rainfall fields using radar rainfall and rain gage data. J Hydrol 208:37–52Seo DJ, Krajewski WF, Bowles DS (1990) Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments. Water Resour Res 26:469–477Sideris I, Gabella M, Erdin R, Germann U (2014) Real-time radar-rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Q J R Meteorol Soc 140:1097–1111Sinclair S, Pegram G (2005) Combining radar and rain gauge rainfall estimates using conditional merging. Atmos Sci Lett 6:19–22Sun X, Mein R, Keenan T, Elliott J (2000) Flood estimation using radar and raingauge data. J Hydrol 239:4–18Todini E (2001) A bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol Earth Syst Sci Dis 5:187–199Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32:986–1002Wilson JW, Brandes EA (1979) Radar measurement of rainfall—a summary. Bull Am Meteorol Soc 60:1048–1060Yao T, Journel AG (1998) Automatic modeling of (cross) covariance tables using fast fourier transform. Math Geol 30:589–615Yoon SS, Bae DH (2013) Optimal rainfall estimation by considering elevation in the Han River Basin, South Korea. J Appl Meteorol Climatol 52:802–818Zawadzki I (1973) Statistical properties of precipitation patterns. J Appl Meteorol 12:459–47

    Management Alternatives of Aquifer Storage, Distribution, and Simulation in Conjunctive Use

    Full text link
    [EN] Aquifers are ubiquitous, and their water is easy to obtain with low extraction costs. On many occasions, these characteristics lead to overexploitation due to important water level declines, reduction of river base flows, enhanced seawater intrusion, and wetland affection. The forecasted increase in water demands and global warming will impact the future availability of water resources. Conjunctive use of surface and subsurface waters can help in mitigating these impacts. There are two main conjunctive use strategies: artificial recharge (AR) and alternate conjunctive use (ACU). AR stores waters that are not to be used directly in aquifers. ACU utilizes groundwater in dry periods, while surface waters are preferred in wet ones; this allows the increase of water supply with lower dam storage, economic gains, and environmental advantages. Efficient conjunctive use can prevent soil salinization and waterlogging problems in semiarid countries due to excessive recharge from irrigation return flows or other origins. Groundwater is a neglected and generally misused resource to maintain environmental conditions. When considering the solution to a water resources problem, groundwater should always be part of the design as an alternative or a complementary resource. Aquifers have large inertia, and changes in their volumes are only noticeable after years of observations. Unfortunately, groundwater observation networks are much poorer than surface ones, something that should be changed if groundwater is to come to the rescue in these times of climate change. Human and material resources should be made available to monitor, control, analyze, and forecast groundwater.This research was funded by AGREEMAR Project (PCI2022-133001 funded by Spain's MCIN/AEI/10.13039/501100011033, by European Union's NextGenerationEU/PRTR), the SIGLOAN project (RTI2018-101397-B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de I + D + i Orientada a los Retos de la Sociedad) and by project eGROUNDWATER funded by the PRIMA programme supported by the European's Union Horizon 2020 research and innovation programme under grant number 1921.Sahuquillo, A.; Cassiraga, EF.; Gómez-Hernández, JJ.; Andreu Álvarez, J.; Pulido-Velazquez, M.; Pulido Velázquez, D.; Álvarez-Villa, ÓD.... (2022). Management Alternatives of Aquifer Storage, Distribution, and Simulation in Conjunctive Use. Water. 14(15):1-15. https://doi.org/10.3390/w14152332115141

    Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems

    Full text link
    Nitrate concentrations in multi-aquifer systems are heavily affected by the presence of wellbores (active or abandoned) that are screened in several aquifers. The spatial variability of hydraulic conductivity in the confining layers has also an important impact on the concentrations. A synthetic three-dimensional flow and transport exercise was carried in a multi-aquifer system consisting of two aquifers separated by an aquitard in which 100 vertical wellbores had been drilled. To model the wellbores and the flow and transport connection between aquifers that they may induce, we assign a high vertical hydraulic conductivity and a low effective porosity to the cell blocks including the wells. With these parameters, a solute will travel quickly from one aquifer to the other without being stored in the well itself. The wellbores will act as preferential pathways, and the solute will move quickly between aquifers according to the hydrodynamic conditions. Not considering these preferential pathways could induce erroneous interpretations of the solute distribution in an aquifer. We also noted that when there are vertical wellbores that connect aquifers in a multi-aquifer system, low conductivity in the aquitard enhances the flow of solute through the wellbores. Time-varying pumping rates induce important fluctuations in nitrate concentrations; therefore, any estimate of the water quality of the aquifer will depend on the moment when the data has been recorded. Consequently, concentration maps obtained by interpolation of point samples are seldom a good indicator of the chemical status of groundwater bodies; alternatively, we recommend complementing the usual interpolated maps with numerical models to gain a true understanding of the spatial distribution of the solute concentration. © 2012 International Association for Mathematical Geosciences.The studies in which this paper is based on have been partially funded by the Spanish MICIN (Ministerio de Ciencia e Innovacion) CGL2008-06394 C02-01 project.Mejía, A.; Cassiraga, EF.; Sahuquillo Herráiz, A. (2012). Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems. Mathematical Geosciences. 44(2):227-238. https://doi.org/10.1007/s11004-012-9388-3S227238442Arumí JL, Núñez J, Salgado L, Claret M (2006) Evaluación del riesgo de contaminación con nitrato de pozos de suministro de agua potable rural en Chile (zona de parral). Rev Panam Salud Pública 20:385–392. doi: 10.1590/S1020-49892006001100004Bonton A, Rouleau A, Bouchard C, Rodriguez M (2011) Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agric Syst 104:429–439. doi: 10.1016/j.agsy.2011.02.001Butler J, Whittemore D, Zhan X, Healey J (2004) Analysis of two pumping tests at the O’Rourke bridge site on the Arkansas River in Pawnee County, Kansas. Resources. KGS Open File Report 2004–32, Kansas Department of Agriculture, Division of Water. http://www.kgs.ku.edu/Hydro/Publications/2004/OFR04_32/larned_pumping.pdfCarbó LI, Flores MC, Herrero MA (2009) Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires Argentina. Environ Geol 57:1489–1500. doi: 10.1007/s00254-008-1426-6Cionchi J, Redin I (2004) La contaminación del agua subterránea producida por las deficiencias constructivas en las perforaciones. Obras sanitarias MGP. Gerencia de Planificación y Administración de Recursos Hídricos—Obras Sanitarias Mar del Plata SE. Proyecto REDESAR. http://www.osmgp.gov.ar/web001/documentos/pdf/la_contaminacion_del_agua.pdfElci A, Molz FJ, Waldrop WR (2001) Implications of observed and simulated ambient flow in monitoring wells. Ground Water 39(6):853–862. doi: 10.1111/j.1745-6584.2001.tb02473.xHarbaugh AW, Banta ER, Hill MC, McDonal MG (2000) MODFLOW-2000, the US Geological Survey modular ground water model. User guide to modularization concepts and the ground water flow process. US Geological Survey Open-File Report 00-92Konikow LF, Hornberger GZ (2006) Modelling effects of multimode wells on solute transport. Ground Water 44(5):648–660. doi: 10.1111/j.1745-6584.2006.00231.xKozuskanich J, Novakowski KS, Anderson BC (2011) Fecal indicator bacteria variability in samples pumped from monitoring wells. Ground Water 49(1):43–52. doi: 10.1111/j.1745-6584.2010.00713.xLacombe S, Sudicky EA, Frape SK, Unger AJ (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882. doi: 10.1029/95WR00661Landon MK, Jurgens BC, Katz BG, EbertS SM, Burow KR, Crandall CA (2010) Depth dependent sampling to identify short-circuit pathways to public supply wells in multiple aquifer settings in the United States. Hydrogeol J 18(3):577–593. doi: 10.1007/s10040-009-0531-2Ma R, Zheng C, Tonkin M, Zachara M (2011) Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions. J Contam Hydrol 123:11–19. doi: 10.1016/j.jconhyd.2010.12.001Mayo L (2010) Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and water quality from long-screened wells: What is sampled an what is not? Hydrogeol J 18:823–837. doi: 10.1007/s10040-009-0568-2Moratalla A, Gómez J, Heras J, Sanz D, Castaño S (2009) Nitrate in the water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water Resour Manag 23:1621–1640. doi: 10.1007/s11269-008-9344-7Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—A review. J Environ Qual 22:392–402Wolfe AH, Patz JA (2002) Reactive nitrogen and human health: acute and long term implications. J Hum-Environ Syst 31(2):120–125. doi: 10.1579/0044-7447-31.2.120Zheng C, Wang P (1999) MT3DMS. Department of Geological Sciences, Army Corps of Engineer

    ANÁLISIS DE LA DISTRIBUCIÓN DE LA CONCENTRACIÓN DE UN SOLUTO CONSERVATIVO EN UN MEDIO POROSO A ESCALA REGIONAL CONSIDERANDO FLUJO VERTICAL A TRAVÉS DE PERFORACIONES ACTIVAS E INACTIVAS

    Full text link
    [ES] La existencia, interacción, diseño y operación de perforaciones son factores que pueden aumentar la concentración de nitratos en las masas de agua subterránea. En este trabajo se utiliza un modelo numérico de flujo y transporte de un soluto conservativo en 3D a escala regional, para conocer cómo influyen estos factores en la distribución de un contaminante. Se modelan dos acuíferos separados por un acuitardo en el que en régimen natural se desarrolla un flujo horizontal y al que ingresa un contaminante a través de la zona no saturada. Se plantean diferentes escenarios en cuanto al tipo y cantidad de pozos. El flujo vertical se representa asignando a las celdas que corresponden al pozo una porosidad baja y un valor de conductividad hidráulica vertical alta, distintos del resto del área a modelar. Se cuantificó el flujo vertical en las perforaciones y se observó que tiene un impacto significativo en los procesos de mezcla y en la distribución de las concentraciones. Los resultados muestran que los modelos son herramientas de ayuda para la evaluación de la calidad del agua, que permiten conocer la influencia del diseño y operación de las perforaciones en la distribución de un contaminante, y proponer a los usuarios medidas que ayuden a mejorar el estado químico del acuífero, por ejemplo, cambios en el régimen de explotación, rediseño o clausura de perforaciones. También, que es importante incluir en los modelos de acuíferos con problemas de contaminación el flujo vertical a través de todas las perforaciones existentes, y considerar su influencia en el análisis de los datos de monitoreo.Mejia-Fajardo, ADP.; Cassiraga, EF.; Sahuquillo Herráiz, A. (2018). ANÁLISIS DE LA DISTRIBUCIÓN DE LA CONCENTRACIÓN DE UN SOLUTO CONSERVATIVO EN UN MEDIO POROSO A ESCALA REGIONAL CONSIDERANDO FLUJO VERTICAL A TRAVÉS DE PERFORACIONES ACTIVAS E INACTIVAS. Asociación Internacional de Hidrogeológos - Grupo Español. 295-304. http://hdl.handle.net/10251/181060S29530

    Identifying non-stationary and long-term river-aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain)

    Full text link
    [EN] The objective of this study was to analyse periodicities and the long-term variability of monthly Jucar River-Mancha Oriental Aquifer interactions (RAI) and regionally measured precipitation (PP) with special focus on the correlations between these local hydrological variables and the large climatic patterns governing the Iberian Peninsula, represented by their teleconnection indices - the North Atlantic Oscillation index (NAOi) and the Western Mediterranean Oscillation index (WeMOi). To that end, wavelet analysis has been applied since it not only provides insight into the time-series dynamics but also permits statistical interpretation and correlation analysis. As a result, several periodicities have been detected: intermittent semi-annual periodicity in PP and the NAOi and annual periodicity in the RAI, NAOi and WeMOi time series. Long cycles (approximately 14 years) are also observed in the PP and WeMOi time series. The cross-wavelet spectra show a correlation between the RAI and the rest of the variables on the semi-annual and the annual scales, while wavelet coherence detects common behaviour with longer cycles - 5-6 years between the NAOi and the RAI and cycles of both 1-5 years and 7-10 years between PP and the RAI. Furthermore, results show that the periodicities in the teleconnection indices and precipitation propagate into the RAI with certain lead times: 3 months between the RAI and PP and 6 months between the RAI and the NAOi. The results indicate that the detected periodicities and the coherence between the studied variables could have applications in strategic planning on a river basin scale, taking into account the propagation times and the frequency scale. This methodological approach can be applied into strategic water resource planning independently of the geographical location of the hydrogeological system, the basin size and the climate region.Special thanks go to the Júcar Water Authority (CHJ) and stakeholders (JCRMO) in the Mancha Oriental System for providing the necessary information. The content of this report does not represent the view of CHJ and JCRMO. This work has been funded by the research projects CGL2017-87216-C4-2-R from the National Research Program I + D + i (FEDER/Ministerio de Ciencia, Investigación y Universidades) and SBPLY/17/180501/000296 from the National Research Program I + D + i of the Junta of Communities of Castile-La Mancha. We would also like to thank Christine Laurin for the English copy editing and valued comments.Dountcheva, I.; Sanz, D.; Cassiraga, EF.; Galabov, V.; Gómez-Alday, JJ. (2020). Identifying non-stationary and long-term river-aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain). Hydrological Processes. 34(25):5134-5145. https://doi.org/10.1002/hyp.13934S513451453425Butler, J. J., Whittemore, D. O., Wilson, B. B., & Bohling, G. C. (2018). Sustainability of aquifers supporting irrigated agriculture: a case study of the High Plains aquifer in Kansas. Water International, 43(6), 815-828. doi:10.1080/02508060.2018.1515566Cassiraga E. Sanz D. Castaño S. Álvarez O. &Sahuquillo A.(2013).Modelo de flujo subterráneo de los acuíferos de la Mancha oriental y sus relaciones con el río Júcar [groundwater model flow of the Mancha oriental aquifer and their relations with the Júcar River]. Unpublished report (pp 77). Confederación Hidrográfica del Júcar.Castaño, S., Sanz, D., & Gómez-Alday, J. J. (2013). Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain. Water Resources Management, 27(7), 2089-2101. doi:10.1007/s11269-013-0277-4Charlier, J.-B., Ladouche, B., & Maréchal, J.-C. (2015). Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. Journal of Hydrology, 523, 610-623. doi:10.1016/j.jhydrol.2015.02.003Confederación Hidrográfica de Júcar. (2005).Protocol for action in situations of alert and eventual drought (in Spanish). Retrieved fromhttps://www.chj.es/es-es/medioambiente/gestionsequia/Documents/Plan%20Especial%20Alerta%20y%20Eventual%20Sequia/Protocolo_CHJ_dic2005_JG.pdf.Confederación Hidrográfica de Júcar. (2010).Post‐drought report Paragraph 10 PES (in Spanish). Retrieved fromhttps://www.chj.es/es-es/medioambiente/gestionsequia/Documents/Informes%20Seguimiento/INFORME_POST_SEQUIA_2010.pdf.Confederación Hidrográfica de Júcar. (2015).Júcar River basin management plan 2015–2021 (in Spanish). Júcar River Basin Authority (Demarcación hidrográfica del Júcar).Confederación Hidrográfica del Júcar. Ministry of the Environment Madrid.Commission of the European Communities (CEC). (2000).Directive of the European Parliament and of the council establishing a framework for community action in the field of water policy: Joint text approved by the conciliation committee. 1997/0067(cod) C5‐0347/00.Daubechies, I. (1992). Ten Lectures on Wavelets. doi:10.1137/1.9781611970104Gómez-Martínez, G., Pérez-Martín, M. A., Estrela-Monreal, T., & del-Amo, P. (2018). North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Júcar River, Spain). Water Resources Management, 32(8), 2717-2734. doi:10.1007/s11269-018-1954-0Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. doi:10.5194/npg-11-561-2004Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., & Gurdak, J. J. (2011). Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeology Journal, 19(6), 1269-1278. doi:10.1007/s10040-011-0755-9Hurrell J. W. Kushnir Y. Ottersen G. &Visbeck M.(2003).Preface.The North Atlantic Oscillation:Climatic Significance and Environmental Impact Geophysical Monograph Series: Vii‐Viii. Retrieved fromhttps://doi.org/10.1029/gm134p0viiJones, P. D., Davies, T. D., Lister, D. H., Slonosky, V., Jónsson, T., Bärring, L., … Beck, C. (1999). Monthly mean pressure reconstructions for Europe for the 1780–1995 period. International Journal of Climatology, 19(4), 347-364. doi:10.1002/(sici)1097-0088(19990330)19:43.0.co;2-sJones, P. D., Jonsson, T., & Wheeler, D. (1997). Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology, 17(13), 1433-1450. doi:10.1002/(sici)1097-0088(19971115)17:133.0.co;2-pKomasi, M., & Sharghi, S. (2019). Recognizing factors affecting decline in groundwater level using wavelet-entropy measure (case study: Silakhor plain aquifer). Journal of Hydroinformatics, 21(3), 510-522. doi:10.2166/hydro.2019.111Labat, D., Ababou, R., & Mangin, A. (2001). Introduction of Wavelet Analyses to Rainfall/Runoffs Relationship for a Karstic Basin: The Case of Licq-Atherey Karstic System (France). Ground Water, 39(4), 605-615. doi:10.1111/j.1745-6584.2001.tb02348.xLópez J. &Frances F.(2010).Influence of the North Atlantic oscillation and the western Mediterranean oscillation in the maximum flow events in Spain. Paper presented at: International workshop advances in statistical hydrology.Lopez-Bustins, J.-A., Martin-Vide, J., & Sanchez-Lorenzo, A. (2008). Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Global and Planetary Change, 63(2-3), 171-176. doi:10.1016/j.gloplacha.2007.09.002Markovic, D., & Koch, M. (2013). Long-term variations and temporal scaling of hydroclimatic time series with focus on the German part of the Elbe River Basin. Hydrological Processes, 28(4), 2202-2211. doi:10.1002/hyp.9783Ministerio de Medio Ambiente (MMA). (2007).Orden MAM/698/2007 de 21 de Marzo Por la Que se Aprueban los Planes Especiales de Actuación en Situaciones de Alerta y Eventual Sequía en los Ámbitos de los Planes Hidrológicos de Cuencas Intercomunitarias. Boletín Oficial del Estado. Retrieved fromhttps://www.boe.es/eli/es/o/2007/03/21/mam698Mukherjee, A., Saha, D., Harvey, C. F., Taylor, R. G., Ahmed, K. M., & Bhanja, S. N. (2015). Groundwater systems of the Indian Sub-Continent. Journal of Hydrology: Regional Studies, 4, 1-14. doi:10.1016/j.ejrh.2015.03.005Ortega-Gómez, T., Pérez-Martín, M. A., & Estrela, T. (2018). Improvement of the drought indicators system in the Júcar River Basin, Spain. Science of The Total Environment, 610-611, 276-290. doi:10.1016/j.scitotenv.2017.07.250Osborn, T. J. (2006). Recent variations in the winter North Atlantic Oscillation. Weather, 61(12), 353-355. doi:10.1256/wea.190.06Osman, Y. Z., & Bruen, M. P. (2002). Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. Journal of Hydrology, 264(1-4), 69-86. doi:10.1016/s0022-1694(02)00067-7Ouachani, R., Bargaoui, Z., & Ouarda, T. (2011). Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda Basin. International Journal of Climatology, 33(1), 58-76. doi:10.1002/joc.3407Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003Puri S. &Aureli A.(2009).Atlas of Transboundary aquifers: Global maps regional cooperation and local inventories.ISARM Program.Salerno, F., & Tartari, G. (2009). A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. Journal of Hydrology, 376(1-2), 295-306. doi:10.1016/j.jhydrol.2009.07.042Sang, Y.-F., Wang, Z., & Liu, C. (2012). Discrete wavelet-based trend identification in hydrologic time series. Hydrological Processes, 27(14), 2021-2031. doi:10.1002/hyp.9356Sanz D.(2005).Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha Oriental (Contribution to the geometric characterization of the hydrogeological units of the La Mancha Oriental aquifer system) Memoria para optar al grado de doctor (PhD thesis). Universidad Complutense de Madrid Facultad de Ciencias Geológicas Departamento de Geodinámica.Sanz, D., Castaño, S., Cassiraga, E., Sahuquillo, A., Gómez-Alday, J. J., Peña, S., & Calera, A. (2011). Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeology Journal, 19(2), 475-487. doi:10.1007/s10040-010-0694-xSanz, D., Gómez-Alday, J. J., Castaño, S., Moratalla, A., De las Heras, J., & Martínez-Alfaro, P. E. (2009). Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeology Journal, 17(6), 1375-1391. doi:10.1007/s10040-009-0446-ySanz, D., Vos, J., Rambags, F., Hoogesteger, J., Cassiraga, E., & Gómez-Alday, J. J. (2018). The social construction and consequences of groundwater modelling: insight from the Mancha Oriental aquifer, Spain. International Journal of Water Resources Development, 35(5), 808-829. doi:10.1080/07900627.2018.1495619Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. doi:10.1175/1520-0477(1998)0792.0.co;2Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., & Esteban-Parra, M. J. (2004). North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8), 925-944. doi:10.1002/joc.104
    corecore