99 research outputs found

    The Role of Dust in Models of Population Synthesis

    Full text link
    We have employed state-of-the-art evolutionary models of low and intermediate-mass AGB stars, and included the effect of circumstellar dust shells on the spectral energy distribution (SED) of AGB stars, to revise the Padua library of isochrones (Bertelli et al. 1994). The major revision involves the thermally pulsing AGB phase, that is now taken from fully evolutionary calculations by Weiss & Ferguson (2009). Two libraries of about 600 AGB dust-enshrouded SEDs each have also been calculated, one for oxygen-rich M-stars and one for carbon-rich C-stars. Each library accounts for different values of input parameters like the optical depth {\tau}, dust composition, and temperature of the inner boundary of the dust shell. These libraries of dusty AGB spectra have been implemented into a large composite library of theoretical stellar spectra, to cover all regions of the Hertzsprung-Russell Diagram (HRD) crossed by the isochrones. With the aid of the above isochrones and libraries of stellar SEDs, we have calculated the spectro-photometric properties (SEDs, magnitudes, and colours) of single-generation stellar populations (SSPs) for six metallicities, more than fifty ages (from 3 Myr to 15 Gyr), and nine choices of the Initial Mass Function. The new isochrones and SSPs have been compared to the colour-magnitude diagrams (CMDs) of field populations in the LMC and SMC, with particular emphasis on AGB stars, and the integrated colours of star clusters in the same galaxies, using data from the SAGE (Surveying the Agents of Galaxy Evolution) catalogues. We have also examined the integrated colours of a small sample of star clusters located in the outskirts of M31. The agreement between theory and observations is generally good. In particular, the new SSPs reproduce the red tails of the AGB star distribution in the CMDs of field stars in the Magellanic Clouds.Comment: Accepted for publication in MNRA

    Effect of the star formation histories on the SFR-M_* relation at z ≥ 2

    Get PDF
    We investigate the effect of different star formation histories (SFHs) on the relation between stellar mass (M_∗) and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift z_(spec)> 2 drawn from the VIMOS Ultra-Deep Survey (VUDS). We produce an extensive database of dusty model galaxies, calculated starting from a new library of single stellar population (SSPs) models, weighted by a set of 28 different star formation histories based on the Schmidt function, and characterized by different ratios of the gas infall timescale τ_(infall) to the star formation efficiency ν. Dust extinction and re-emission were treated by means of the radiative transfer calculation. The spectral energy distribution (SED) fitting technique was performed by using GOSSIP+, a tool able to combine both photometric and spectroscopic information to extract the best value of the physical quantities of interest, and to consider the intergalactic medium (IGM) attenuation as a free parameter. We find that the main contribution to the scatter observed in the SFR-M_∗ plane is the possibility of choosing between different families of SFHs in the SED fitting procedure, while the redshift range plays a minor role. The majority of the galaxies, at all cosmic times, are best fit by models with SFHs characterized by a high τ_(infall)/ν ratio. We discuss the reliability of a low percentage of dusty and highly star-forming galaxies in the context of their detection in the far infrared (FIR)

    Modelling galaxy spectra in presence of interstellar dust-III. From nearby galaxies to the distant Universe

    Full text link
    Improving upon the standard evolutionary population synthesis (EPS) technique, we present spectrophotometric models of galaxies whose morphology goes from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). These models enclose three main physical components: the diffuse ISM composed by gas and dust, the complexes of molecular clouds (MCs) where active star formation occurs and the stars of any age and chemical composition. These models are based on robust evolutionary chemical models that provide the total amount of gas and stars present at any age and that are adjusted in order to match the gross properties of galaxies of different morphological type. We have employed the results for the properties of the ISM presented in Piovan, Tantalo & Chiosi (2006a) and the single stellar populations calculated by Cassar\`a et al. (2013) to derive the spectral energy distributions (SEDs) of galaxies going from pure bulge to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the spectral energy distribution of three prototype galaxies are highlighted. We conclude analyzing the capability of our galaxy models in reproducing the SEDs of real galaxies in the Local Universe and as a function of redshift.Comment: 22 pages, 10 figures, submitted to MNRA

    Effect of the star formation histories on the SFR-M_* relation at z ≥ 2

    Get PDF
    We investigate the effect of different star formation histories (SFHs) on the relation between stellar mass (M_∗) and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift z_(spec)> 2 drawn from the VIMOS Ultra-Deep Survey (VUDS). We produce an extensive database of dusty model galaxies, calculated starting from a new library of single stellar population (SSPs) models, weighted by a set of 28 different star formation histories based on the Schmidt function, and characterized by different ratios of the gas infall timescale τ_(infall) to the star formation efficiency ν. Dust extinction and re-emission were treated by means of the radiative transfer calculation. The spectral energy distribution (SED) fitting technique was performed by using GOSSIP+, a tool able to combine both photometric and spectroscopic information to extract the best value of the physical quantities of interest, and to consider the intergalactic medium (IGM) attenuation as a free parameter. We find that the main contribution to the scatter observed in the SFR-M_∗ plane is the possibility of choosing between different families of SFHs in the SED fitting procedure, while the redshift range plays a minor role. The majority of the galaxies, at all cosmic times, are best fit by models with SFHs characterized by a high τ_(infall)/ν ratio. We discuss the reliability of a low percentage of dusty and highly star-forming galaxies in the context of their detection in the far infrared (FIR)

    A powerful (and likely young) radio-loud quasar at z=5.3

    Full text link
    We present the discovery of PSO J191.05696++86.43172 (hereafter PSO J191++86), a new powerful radio-loud quasar (QSO) in the early Universe (z = 5.32). We discovered it by cross-matching the NRAO VLA Sky Survey (NVSS) radio catalog at 1.4 GHz with the first data release of the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS PS1) in the optical. With a NVSS flux density of 74.2 mJy, PSO J191++86 is one of the brightest radio QSO discovered at z∼\sim5. The intensity of its radio emission is also confirmed by the very high value of radio loudness (R>300). The observed radio spectrum of PSO J191++86 shows a possible turnover around ∼\sim1 GHz (i.e., ∼\sim6 GHz in the rest frame), making it a Gigahertz-Peaked Spectrum (GPS) source. However, variability could affect the real shape of the radio spectrum, since the data in hand have been taken ∼\sim25 years apart. By assuming a peak of the observed radio spectrum between 1 and 2 GHz (i.e. ∼\sim 6 and 13 GHz in the rest-frame) we found a linear size of the source of ∼\sim10-30 pc and a corresponding kinetic age of 150-460 yr. This would make PSO J191++86 a newly born radio source. However, the large X-ray luminosity (5.3Ă—\times1045^{45} erg s−1^{-1}), the flat X-ray photon index (ΓX\Gamma_X=1.32) and the optical-X-ray spectral index (αox~\tilde{\alpha_{ox}}=1.329) are typical of blazars. This could indicate that the non-thermal emission of PSO J191++86 is Doppler boosted. Further radio observations (both on arcsec and parsec scales) are necessary to better investigate the nature of this powerful radio QSO.Comment: 10 pages, 9 figures, 5 tables, Accepted for publication in A&
    • …
    corecore