61 research outputs found

    Early palliative care versus usual haematological care in multiple myeloma: retrospective cohort study

    Get PDF
    Objectives Although early palliative care (EPC) is beneficial in acute myeloid leukaemia, little is known about EPC value in multiple myeloma (MM). We compared quality indicators for palliative and end of life (EOL) care in patients with MM receiving EPC with those of patients who received usual haematological care (UHC).Methods This observational, retrospective study was based on 290 consecutive patients with MM. The following indicators were abstracted: providing psychological support, assessing/managing pain, discussing goals of care, promoting advance care plan, accessing home care services; no anti MM treatment within 14 and 30 days and hospice length of stay >7 days before death; no cardiopulmonary resuscitation, no intubation, <2 hospitalisations and emergency department visits within 30 days before death. Comparisons were performed using unadjusted and confounder adjusted regression models.Results 55 patients received EPC and 231 UHC. Compared with UHC patients, EPC patients had a significantly higher number of quality indicators of care (mean 2.62 +/- 1.25 vs 1.12 +/- 0.95; p<0.0001)); a significant reduction of pain intensity over time (p<0.01) and a trend towards reduced aggressiveness at EOL, with the same survival (5.3 vs 5.46 years; p=0.74)).Conclusions Our data support the value of integrating EPC into MM routine practice and lay the groundwork for future prospective comparative studies

    An analysis pipeline for CHIME/FRB full-array baseband data

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) has become a leading facility for detecting fast radio bursts (FRBs) through the CHIME/FRB backend. CHIME/FRB searches for fast transients in polarization-summed intensity data streams that have 24-kHz spectral and 1-ms temporal resolution. The intensity beams are pointed to pre-determined locations in the sky. A triggered baseband system records the coherent electric field measured by each antenna in the CHIME array at the time of FRB detections. Here we describe the analysis techniques and automated pipeline developed to process these full-array baseband data recordings. Whereas the real-time FRB detection pipeline has a localization limit of several arcminutes, offline analysis of baseband data yields source localizations with sub-arcminute precision, as characterized by using a sample of pulsars and one repeating FRB with known positions. The baseband pipeline also enables resolving temporal substructure on a micro-second scale and the study of polarization including detections of Faraday rotation

    Localizing FRBs through VLBI with the Algonquin Radio Observatory 10 m Telescope

    Get PDF
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ/D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that the differential ionospheric contribution between the two sites must be measured to a precision of 1 × 10-8 pc cm-3 to provide a reasonable localization from a detection in the 400-800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10 m telescope, the first non-repeating FRB in this long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project

    Detection of Repeating FRB 180916.J0158+65 Down to Frequencies of 300 MHz

    Get PDF
    We report on the detection of seven bursts from the periodically active, repeating fast radio burst (FRB) source FRB 180916.J0158+65 in the 300-400-MHz frequency range with the Green Bank Telescope (GBT). Emission in multiple bursts is visible down to the bottom of the GBT band, suggesting that the cutoff frequency (if it exists) for FRB emission is lower than 300 MHz. Observations were conducted during predicted periods of activity of the source, and had simultaneous coverage with the Low Frequency Array (LOFAR) and the FRB backend on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. We find that one of the GBT-detected bursts has potentially associated emission in the CHIME band (400-800 MHz) but we detect no bursts in the LOFAR band (110-190 MHz), placing a limit of α>1.0\alpha > -1.0 on the spectral index of broadband emission from the source. We also find that emission from the source is severely band-limited with burst bandwidths as low as \sim40 MHz. In addition, we place the strictest constraint on observable scattering of the source, << 1.7 ms, at 350 MHz, suggesting that the circumburst environment does not have strong scattering properties. Additionally, knowing that the circumburst environment is optically thin to free-free absorption at 300 MHz, we find evidence against the association of a hyper-compact HII region or a young supernova remnant (age << 50 yr) with the source.Comment: Accepted for publication in ApJ

    CHIME/FRB Detection of Eight New Repeating Fast Radio Burst Sources

    Full text link
    We report on the discovery of eight repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 103.5 to 1281 pc cm3^{-3}. They display varying degrees of activity: six sources were detected twice, another three times, and one ten times. These eight repeating FRBs likely represent the bright and/or high-rate end of a distribution of infrequently repeating sources. For all sources, we determine sky coordinates with uncertainties of \sim10^\prime. FRB 180916.J0158+65 has a burst-averaged DM = 349.2±0.3349.2 \pm 0.3 pc cm3^{-3} and a low DM excess over the modelled Galactic maximum (as low as \sim20 pc cm3^{-3}); this source also has a Faraday rotation measure (RM) of 114.6±0.6-114.6 \pm 0.6 rad m2^{-2}, much lower than the RM measured for FRB 121102. FRB 181030.J1054+73 has the lowest DM for a repeater, 103.5±0.3103.5 \pm 0.3 pc cm3^{-3}, with a DM excess of \sim 70 pc cm3^{-3}. Both sources are interesting targets for multi-wavelength follow-up due to their apparent proximity. The DM distribution of our repeater sample is statistically indistinguishable from that of the first 12 CHIME/FRB sources that have not repeated. We find, with 4σ\sigma significance, that repeater bursts are generally wider than those of CHIME/FRB bursts that have not repeated, suggesting different emission mechanisms. Our repeater events show complex morphologies that are reminiscent of the first two discovered repeating FRBs. The repetitive behavior of these sources will enable interferometric localizations and subsequent host galaxy identifications.Comment: 40 pages, 11 figures; accepted by ApJL on 28 September 2019; added analysis of correlation between width and max. flux densit

    Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO--Virgo Observing Run O3a

    Get PDF
    We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC-1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coalescences with at least one neutron star component. A targeted search for generic gravitational-wave transients was conducted on 40 FRBs. We find no significant evidence for a gravitational-wave association in either search. Given the large uncertainties in the distances of the FRBs inferred from the dispersion measures in our sample, however, this does not conclusively exclude any progenitor models that include emission of a gravitational wave of the types searched for from any of these FRB events. We report 90%90\% confidence lower bounds on the distance to each FRB for a range of gravitational-wave progenitor models. By combining the inferred maximum distance information for each FRB with the sensitivity of the gravitational-wave searches, we set upper limits on the energy emitted through gravitational waves for a range of emission scenarios. We find values of order 105110^{51}-105710^{57} erg for a range of different emission models with central gravitational wave frequencies in the range 70-3560 Hz. Finally, we also found no significant coincident detection of gravitational waves with the repeater, FRB 20200120E, which is the closest known extragalactic FRB
    corecore