11 research outputs found
Reduced Gutzwiller formula with symmetry: case of a Lie group
We consider a classical Hamiltonian on , invariant by a
Lie group of symmetry , whose Weyl quantization is a selfadjoint
operator on . If is an irreducible character of ,
we investigate the spectrum of its restriction to the
symmetry subspace of coming
from the decomposition of Peter-Weyl. We give semi-classical Weyl asymptotics
for the eigenvalues counting function of in an interval of
, and interpret it geometrically in terms of dynamics in the
reduced space . Besides, oscillations of the spectral
density of are described by a Gutzwiller trace formula
involving periodic orbits of the reduced space, corresponding to quasi-periodic
orbits of .Comment: 23 page
Semi-classical trace formula, isochronous case. Application to conservative systems
Under conditions of clean flow we compute the leading term in the STF when
the set of periods of the energy surface is discrete. Comparing to the case of
non-degenerate periodic orbits, we obtain a supplementary term which is given
in terms of the linearized flow. As particular cases, we give a STF for
quadratic Hamiltonians and we obtain the Berry-Tabor formula for integrable
systems. For conservative systems (i.e. systems with several first integrals),
we give practical conditions to get a clean flow and interpret the leading term
of the STF for a compact symmetry. We give several examples to illustrate our
computation.Comment: 24 page
Reduced Weyl asymptotics for pseudodifferential operators on bounded domains II. The compact group case
AbstractLet G⊂O(n) be a compact group of isometries acting on n-dimensional Euclidean space Rn, and X a bounded domain in Rn which is transformed into itself under the action of G. Consider a symmetric, classical pseudodifferential operator A0 in L2(Rn) that commutes with the regular representation of G, and assume that it is elliptic on X. We show that the spectrum of the Friedrichs extension A of the operator res○A0○ext:Cc∞(X)→L2(X) is discrete, and using the method of the stationary phase, we derive asymptotics for the number Nχ(λ) of eigenvalues of A equal or less than λ and with eigenfunctions in the χ-isotypic component of L2(X) as λ→∞, giving also an estimate for the remainder term for singular group actions. Since the considered critical set is a singular variety, we recur to partial desingularization in order to apply the stationary phase theorem
Reduced Gutzwiller formula with symmetry: case of a finite group
We consider a classical Hamiltonian on , invariant by a
finite group of symmetry , whose Weyl quantization is a
selfadjoint operator on . If is an irreducible
character of , we investigate the spectrum of its restriction
to the symmetry subspace of
coming from the decomposition of Peter-Weyl. We give
reduced semi-classical asymptotics of a regularised spectral density describing
the spectrum of near a non critical energy . If
is compact, assuming that periodic orbits are
non-degenerate in , we get a reduced Gutzwiller trace formula
which makes periodic orbits of the reduced space appear. The
method is based upon the use of coherent states, whose propagation was given in
the work of M. Combescure and D. Robert.Comment: 20 page
The Ground State Energy of Heavy Atoms According to Brown and Ravenhall: Absence of Relativistic Effects in Leading Order
It is shown that the ground state energy of heavy atoms is, to leading order,
given by the non-relativistic Thomas-Fermi energy. The proof is based on the
relativistic Hamiltonian of Brown and Ravenhall which is derived from quantum
electrodynamics yielding energy levels correctly up to order Ry
Hamiltoniens quantiques et symétries
Rapporteurs : Thierry Paul, San Vu Ngoc. Jury : Gilles Carron, Monique Combescure, Bernard Helffer (président), François Laudenbach, Thierry Paul, Georgi Popov, Didier Robert, San Vu NgocWe study the semi-classical behavior of a quantum Hamiltonian whose Weyl symbol has some symmetries coming from a compact group G. The quantum reduction is done by restricting the operator to subspaces of L^2(R^n) called symmetry subspaces, coming from the Peter-Weyl decomposition. The restrictions are called the reduced quantum Hamiltonians. For a finite group, we give a Gutzwiller formula for the reduced Hamiltonian, involving the symmetry of periodic orbits of the energy shell. We interpret this formula in the classical reduced space when G acts freely. For a compact Lie group, we give a Weyl asymptotic formula of the eigenvalue counting function of the reduced Hamiltonian, for which we calculate the first term. Oscillations of the spectral density are also described by a Gutzwiller formula involving periodic orbits of the reduced space, corresponding to quasi-periodic orbits of the euclidian space.On étudie le comportement semi-classique d'hamiltoniens quantiques dont le symbole de Weyl est invariant par un groupe de symétries. La réduction quantique consiste à restreindre le hamiltonien aux sous-espaces de symétrie de L^2(R^n) donnés par la décomposition de Peter-Weyl. Les opérateurs restreints sont appelés hamiltoniens quantiques réduits. Pour un groupe fini, on donne une formule de Gutzwiller pour le hamiltonien réduit qui fait intervenir la symétrie d'orbites périodiques classiques du niveau d'énergie étudié. On l'interprète dans l'espace de phase réduit lorsque le groupe agit librement. Pour un groupe de Lie compact, on donne une asymptotique de Weyl de la fonction de comptage des valeurs propres du hamiltonien réduit. On interprète géométriquement le premier terme. On obtient ici aussi une formule de type Gutzwiller impliquant des orbites périodiques de l'espace de phase réduit qui correspondent à des orbites quasi-périodiques de l'espace euclidien
Hamiltoniens quantiques et symétries
On étudie le comportement semi-classique d'hamiltoniens quantiques dont le symbole de Weyl est invariant par un groupe de symétries. La réduction quantique consiste à restreindre le hamiltonien aux sous-espaces de symétrie de L 2 (R n ) donnés par la décomposition de Peter-Weyl. Les opérateurs restreints sont appelés hamiltoniens quantiques réduits. Pour un groupe fini, on donne une formule de Gutzwiller pour le hamiltonien réduit qui fait intervenir la symétrie d'orbites périodiques classiques du niveau d'énergie étudié. On l'interprète dans l'espace de phase réduit lorsque le groupe agit librement. Pour un groupe de Lie compact, on donne une asymptotique de Weyl de la fonction de comptage des valeurs propres du hamiltonien réduit. On interprète géométriquement le premier terme. On obtient ici aussi une formule de type Gutzwiller impliquant des orbites périodiques de l'espace de phase réduit qui correspondent à des orbites quasi-périodiques de R 2n .We study the semi-classical behavior of a quantum Hamiltonian whose Weyl symbol has some symmetries coming from a compact group G. The quantum reduction is done by restricting the operator to subspaces of L 2 (R n ) The quantum reduction is done by restricting the operator to subspaces of L 2 (R n ) called symmetry subspaces, coming from the Peter Weyl decomposition. The restrictions are called the reduced quantum Hamiltonians. For a finite group, we give a Gutzwiller formula for the reduced Hamiltonian, involving the symmetry of periodic orbits of the energy shell. We interpret this formula in the classical reduced space when G acts freely. For a compact Lie group, we give a Weyl asymptotic formula of the eigenvalue counting function of the reduced Hamiltonian, for which we calculate the first term. Oscillations of the spectral density are also described by a Gutzwiller formula involving periodic orbits of the reduced space, corresponding to quasi-periodic orbits of R 2n .NANTES-BU Sciences (441092104) / SudocSudocFranceF