186 research outputs found

    Bond orbital description of the strain induced second order optical susceptibility in silicon

    Full text link
    We develop a theoretical model, relying on the well established sp3 bond-orbital theory, to describe the strain-induced χ(2)\chi^{(2)} in tetrahedrally coordinated centrosymmetric covalent crystals, like silicon. With this approach we are able to describe every component of the χ(2)\chi^{(2)} tensor in terms of a linear combination of strain gradients and only two parameters α\alpha and β\beta which can be estimated theoretically. The resulting formula can be applied to the simulation of the strain distribution of a practical strained silicon device, providing an extraordinary tool for optimization of its optical nonlinear effects. By doing that, we were able not only to confirm the main valid claims known about χ(2)\chi^{(2)} in strained silicon, but also estimate the order of magnitude of the χ(2)\chi^{(2)} generated in that device

    Optical Gain in Carbon Nanotubes

    Full text link
    Semiconducting single-wall carbon nanotubes (s-SWNTs) have proved to be promising material for nanophotonics and optoelectronics. Due to the possibility of tuning their direct band gap and controlling excitonic recombinations in the near-infrared wavelength range, s-SWNT can be used as efficient light emitters. We report the first experimental demonstration of room temperature intrinsic optical gain as high as 190 cm-1 at a wavelength of 1.3 {\mu}m in a thin film doped with s-SWNT. These results constitute a significant milestone toward the development of laser sources based on carbon nanotubes for future high performance integrated circuits.Comment: 4 figure

    Wideband tunable microwave signal generation in a silicon-based optoelectronic oscillator

    Get PDF
    Si photonics has an immense potential for the development of compact and low-loss opto-electronic oscillators (OEO), with applications in radar and wireless communications. However, current Si OEO have shown a limited performance. Si OEO relying on direct conversion of intensity modulated signals into the microwave domain yield a limited tunability. Wider tunability has been shown by indirect phase-modulation to intensity-modulation conversion, requiring precise control of the phase-modulation. Here, we propose a new approach enabling Si OEOs with wide tunability and direct intensity-modulation to microwave conversion. The microwave signal is created by the beating between an optical source and single sideband modulation signal, selected by an add-drop ring resonator working as an optical bandpass filter. The tunability is achieved by changing the wavelength spacing between the optical source and resonance peak of the resonator. Based on this concept, we experimentally demonstrate microwave signal generation between 6 GHz and 18 GHz, the widest range for a Si-based OEO. Moreover, preliminary results indicate that the proposed Si OEO provides precise refractive index monitoring, with a sensitivity of 94350 GHz RIU and a potential limit of detection of only 10-8 RIU, opening a new route for the implementation of high-performance Si photonic sensors

    Polarization and wavelength agnostic nanophotonic beam splitter

    Full text link
    High-performance optical beam splitters are of fundamental importance for the development of advanced silicon photonics integrated circuits. However, due to the high refractive index contrast of the silicon-on-insulator platform, state of the art Si splitters are hampered by trade-offs in bandwidth, polarization dependence and sensitivity to fabrication errors. Here, we present a new strategy that exploits modal engineering in slotted waveguides to overcome these limitations, enabling ultra-wideband polarization-insensitive optical power splitters, with relaxed fabrication tolerances. The proposed splitter relies on a single-mode slot waveguide which is transformed into two strip waveguides by a symmetric taper, yielding equal power splitting. Based on this concept, we experimentally demonstrate -3±\pm0.5 dB polarization-independent transmission in an unprecedented 390 nm bandwidth (1260 - 1650 nm), even in the presence of waveguide width deviations as large as ±\pm25 nm

    Optical microcavity with semiconducting single-wall carbon nanotubes

    Full text link
    We report studies of optical Fabry-Perot microcavities based on semiconducting single-wall carbon nanotubes with a quality factor of 160. We experimentally demonstrate a huge photoluminescence signal enhancement by a factor of 30 in comparison with the identical film and by a factor of 180 if compared with a thin film containing non-purified (8,7) nanotubes. Futhermore, the spectral full-width at half-maximum of the photo-induced emission is reduced down to 8 nm with very good directivity at a wavelength of about 1.3 μ\mum. Such results prove the great potential of carbon nanotubes for photonic applications
    • …
    corecore