319 research outputs found

    Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    Get PDF
    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res., 120, 7748 (2015). Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.Comment: 17 pages, 4 figures, submitted to Physics of Plasma

    The local dayside reconnection rate for oblique interplanetary magnetic fields

    Get PDF
    We present an analysis of local properties of magnetic reconnection at the dayside magnetopause for various interplanetary magnetic field (IMF) orientations in global magnetospheric simulations. This has heretofore not been practical because it is difficult to locate where reconnection occurs for oblique IMF, but new techniques make this possible. The approach is to identify magnetic separators, the curves separating four regions of differing magnetic topology, which map the reconnection X-line. The electric field parallel to the X-line is the local reconnection rate. We compare results to a simple model of local two-dimensional asymmetric reconnection. To do so, we find the plasma parameters that locally drive reconnection in the magnetosheath and magnetosphere in planes perpendicular to the X-line at a large number of points along the X-line. The global magnetohydrodynamic simulations are from the three-dimensional Block-Adaptive, Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the techniques described here are extensible to any global magnetospheric simulation model. We find that the predicted local reconnection rates scale well with the measured values for all simulations, being nearly exact for due southward IMF. However, the absolute predictions differ by an undetermined constant of proportionality, whose magnitude increases as the IMF clock angle changes from southward to northward. We also show similar scaling agreement in a simulation with oblique southward IMF and a dipole tilt. The present results will be an important component of a full understanding of the local and global properties of dayside reconnection.Comment: 12 pages, 7 figures, 1 table, Submitted to Journal Geophysical Research Space Physics February 12, 2016; Revised April 28, 201

    A New Electric Field in Asymmetric Magnetic Reconnection

    Get PDF
    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale (MMS) mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing Earthward, at the dayside magnetopause reconnection site.Comment: 5 pages, 3 figures, to be published in Physical Review Letter

    Three-dimensional simulations of the orientation and structure of reconnection X-lines

    Get PDF
    This work employs Hall magnetohydrodynamic (MHD) simulations to study the X-lines formed during the reconnection of magnetic fields with differing strengths and orientations embedded in plasmas of differing densities. Although random initial perturbations trigger the growth of X-lines with many orientations, at late time a few robust X-lines sharing an orientation reasonably consistent with the direction that maximizes the outflow speed, as predicted by Swisdak and Drake [Geophys. Res. Lett., 34, L11106, (2007)], dominate the system. The existence of reconnection in the geometry examined here contradicts the suggestion of Sonnerup [J. Geophys. Res., 79, 1546 (1974)] that reconnection occurs in a plane normal to the equilibrium current. At late time the growth of the X-lines stagnates, leaving them shorter than the simulation domain.Comment: Accepted by Physics of Plasma

    On the 3-D structure and dissipation of reconnection-driven flow-bursts

    Get PDF
    The structure of magnetic reconnection-driven outflows and their dissipation are explored with large-scale, 3-D particle-in-cell (PIC) simulations. Outflow jets resulting from 3-D reconnection with a finite length x-line form fronts as they propagate into the downstream medium. A large pressure increase ahead of this ``reconnection jet front'' (RJF), due to reflected and transmitted ions, slows the front so that its velocity is well below the velocity of the ambient ions in the core of the jet. As a result, the RJF slows and diverts the high-speed flow into the direction perpendicular to the reconnection plane. The consequence is that the RJF acts as a thermalization site for the ion bulk flow and contributes significantly to the dissipation of magnetic energy during reconnection even though the outflow jet is subsonic. This behavior has no counterpart in 2-D reconnection. A simple analytic model predicts the front velocity and the fraction of the ion bulk flow energy that is dissipated
    • …
    corecore