208 research outputs found

    Treatment for Vestibular Disorders: How Does Your Physical Therapist Treat Dizziness Related to Vestibular Problems?

    Get PDF
    Dizziness is very common, but it is never normal. Dizziness can make performing daily activities, work, and walking difficult. Many people get dizzy when they turn their head, which can cause problems with walking and makes people more likely to fall. Most of the time dizziness is not from a life-threatening disease. Often dizziness is because of a disorder of the vestibular (or inner ear balance) system. People can get vestibular disorders from infections in the ear, problems with the immune system, medications that harm the inner ear, and rarely from diabetes or stroke because of a lack of blood flow to the inner ear. Stress, poor sleep, migraines, overdoing some activities, and feeling sad can increase symptoms. New guidelines for the treatment of vestibular disorders were published in the April 2016 issue of the Journal of Neurologic Physical Therapy. The guideline describes which exercises are best to treat the dizziness and balance problems commonly seen with an inner ear disorder

    Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Evidence-Based Clinical Practice Guideline: From the American Physical Therapy Association Neurology Section

    Get PDF
    Background: Uncompensated vestibular hypofunction results in postural instability, visual blurring with head movement, and subjective complaints of dizziness and/or imbalance. We sought to answer the question, \ Is vestibular exercise effective at enhancing recovery of function in people with peripheral (unilateral or bilateral) vestibular hypofunction?\ Methods: A systematic review of the literature was performed in 5 databases published after 1985 and 5 additional sources for relevant publications were searched. Article types included meta-analyses, systematic reviews, randomized controlled trials, cohort studies, case control series, and case series for human subjects, published in English. One hundred thirty-five articles were identified as relevant to this clinical practice guideline. Results/Discussion: Based on strong evidence and a preponderance of benefit over harm, clinicians should offer vestibular rehabilitation to persons with unilateral and bilateral vestibular hypofunction with impairments and functional limitations related to the vestibular deficit. Based on strong evidence and a preponderance of harm over benefit, clinicians should not include voluntary saccadic or smooth-pursuit eye movements in isolation (ie, without head movement) as specific exercises for gaze stability. Based on moderate evidence, clinicians may offer specific exercise techniques to target identified impairments or functional limitations. Based on moderate evidence and in consideration of patient preference, clinicians may provide supervised vestibular rehabilitation. Based on expert opinion extrapolated from the evidence, clinicians may prescribe a minimum of 3 times per day for the performance of gaze stability exercises as 1 component of a home exercise program. Based on expert opinion extrapolated from the evidence (range of supervised visits: 2-38 weeks, mean = 10 weeks), clinicians may consider providing adequate supervised vestibular rehabilitation sessions for the patient to understand the goals of the program and how to manage and progress themselves independently. As a general guide, persons without significant comorbidities that affect mobility and with acute or subacute unilateral vestibular hypofunction may need once a week supervised sessions for 2 to 3 weeks; persons with chronic unilateral vestibular hypofunction may need once a week sessions for 4 to 6 weeks; and persons with bilateral vestibular hypofunction may need once a week sessions for 8 to 12 weeks. In addition to supervised sessions, patients are provided a daily home exercise program. Disclaimer: These recommendations are intended as a guide for physical therapists and clinicians to optimize rehabilitation outcomes for persons with peripheral vestibular hypofunction undergoing vestibular rehabilitation

    Cost-Benefit Default Principles

    Full text link

    Tissue Specific Profiling of Females of Schistosoma japonicum by Integrated Laser Microdissection Microscopy and Microarray Analysis

    Get PDF
    Schistosomes are parasitic worms responsible for important human diseases in tropical and developing nations. There is urgent need to develop new drugs and vaccines to augment current treatments for this disease. In recent years, concerted efforts by many laboratories have led to extensive genetic sequencing of the parasites, and the publication of genome sequence for two agents of schistosomiasis appears imminent. This genetic information has revealed many molecules expressed by the schistosome parasites for which no functional information is available. This lack of information extends to ignorance of where in the complex multicellular schistosome parasites the genes are expressed. We integrated two molecular and cellular techniques to address these knowledge gaps. We used laser microdissection microscopy to dissect small but highly important tissues involved in nutrition and reproduction from sections of female Schistosoma japonicum. From these dissected tissues we then used a broad molecular biology method to identify the multiple genes active in these tissues. Our approach has allowed us to formulate the basis of a “gene atlas” for schistosome parasites, defining the expression repertoire of specific tissues. The better understanding of the roles of tissues in parasite biology, especially in development, reproduction and interactions with its human hosts, should promote future investigations into pathogenesis and control of these significant parasites
    corecore