20 research outputs found
Assessment of healthcare worker protocol deviations and self-contamination during personal protective equipment donning and doffing
OBJECTIVETo evaluate healthcare worker (HCW) risk of self-contamination when donning and doffing personal protective equipment (PPE) using fluorescence and MS2 bacteriophage.DESIGNProspective pilot study.SETTINGTertiary-care hospital.PARTICIPANTSA total of 36 HCWs were included in this study: 18 donned/doffed contact precaution (CP) PPE and 18 donned/doffed Ebola virus disease (EVD) PPE.INTERVENTIONSHCWs donned PPE according to standard protocols. Fluorescent liquid and MS2 bacteriophage were applied to HCWs. HCWs then doffed their PPE. After doffing, HCWs were scanned for fluorescence and swabbed for MS2. MS2 detection was performed using reverse transcriptase PCR. The donning and doffing processes were videotaped, and protocol deviations were recorded.RESULTSOverall, 27% of EVD PPE HCWs and 50% of CP PPE HCWs made ≥1 protocol deviation while donning, and 100% of EVD PPE HCWs and 67% of CP PPE HCWs made ≥1 protocol deviation while doffing (P=.02). The median number of doffing protocol deviations among EVD PPE HCWs was 4, versus 1 among CP PPE HCWs. Also, 15 EVD PPE protocol deviations were committed by doffing assistants and/or trained observers. Fluorescence was detected on 8 EVD PPE HCWs (44%) and 5 CP PPE HCWs (28%), most commonly on hands. MS2 was recovered from 2 EVD PPE HCWs (11%) and 3 CP PPE HCWs (17%).CONCLUSIONSProtocol deviations were common during both EVD and CP PPE doffing, and some deviations during EVD PPE doffing were committed by the HCW doffing assistant and/or the trained observer. Self-contamination was common. PPE donning/doffing are complex and deserve additional study.Infect Control Hosp Epidemiol 2017;38:1077–1083</jats:sec
Randomized controlled trial of oral vancomycin treatment in Clostridioides difficile-colonized patients
A gold standard diagnostic for
Clostridioides difficil
Assessment of antibiotic-resistant organism transmission among rooms of hospitalized patients, healthcare personnel, and the hospital environment utilizing surrogate markers and selective bacterial cultures
OBJECTIVE: To assess potential transmission of antibiotic-resistant organisms (AROs) using surrogate markers and bacterial cultures.
DESIGN: Pilot study.
SETTING: A 1,260-bed tertiary-care academic medical center.
PARTICIPANTS: The study included 25 patients (17 of whom were on contact precautions for AROs) and 77 healthcare personnel (HCP).
METHODS: Fluorescent powder (FP) and MS2 bacteriophage were applied in patient rooms. HCP visits to each room were observed for 2-4 hours; hand hygiene (HH) compliance was recorded. Surfaces inside and outside the room and HCP skin and clothing were assessed for fluorescence, and swabs were collected for MS2 detection by polymerase chain reaction (PCR) and selective bacterial cultures.
RESULTS: Transfer of FP was observed for 20 rooms (80%) and 26 HCP (34%). Transfer of MS2 was detected for 10 rooms (40%) and 15 HCP (19%). Bacterial cultures were positive for 1 room and 8 HCP (10%). Interactions with patients on contact precautions resulted in fewer FP detections than interactions with patients not on precautions (P \u3c .001); MS2 detections did not differ by patient isolation status. Fluorescent powder detections did not differ by HCP type, but MS2 was recovered more frequently from physicians than from nurses (P = .03). Overall, HH compliance was better among HCP caring for patients on contact precautions than among HCP caring for patients not on precautions (P = .003), among nurses than among other nonphysician HCP at room entry (P = .002), and among nurses than among physicians at room exit (P = .03). Moreover, HCP who performed HH prior to assessment had fewer fluorescence detections (P = .008).
CONCLUSIONS: Contact precautions were associated with greater HCP HH compliance and reduced detection of FP and MS2
Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections
The rise of antimicrobial resistance in uropathogens has complicated the management of urinary tract infections (UTIs), particularly in patients who are afflicted by recurrent episodes of UTIs. Antimicrobial-resistant (AR) uropathogens persistently colonizing individuals at asymptomatic time points have been implicated in the pathophysiology of UTIs. The dynamics of uropathogen persistence following the resolution of symptomatic disease are, however, mostly unclear. To further our understanding, we determined longitudinal AR uropathogen carriage and clonal persistence of uropathogeni
Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults
Antibiotics are deployed against bacterial pathogens, but their targeting of conserved microbial processes means they also collaterally perturb the commensal microbiome. To understand acute and persistent effects of antibiotics on the gut microbiota of healthy adult volunteers, we quantify microbiome dynamics before, during, and 6 months after exposure to 4 commonly used antibiotic regimens. We observe an acute decrease in species richness and culturable bacteria after antibiotics, with most healthy adult microbiomes returning to pre-treatment species richness after 2 months, but with an altered taxonomy, resistome, and metabolic output, as well as an increased antibiotic resistance burden. Azithromycin delays the recovery of species richness, resulting in greater compositional distance. A subset of volunteers experience a persistent reduction in microbiome diversity after antibiotics and share compositional similarities with patients hospitalized in intensive care units. These results improve our quantitative understanding of the impact of antibiotics on commensal microbiome dynamics, resilience, and recovery
Recommended from our members
572. Relationship Between Chlorhexidine Gluconate (CHG) Skin Concentrations and Microbial Skin Colonization among Medical Intensive Care Unit (MICU) Patients
Abstract Background CHG bathing is used to suppress patients’ microbial skin colonization, in order to prevent infections and transmission of multidrug-resistant organisms. Prior work has suggested that microbial growth is inhibited when CHG skin concentrations exceed threshold levels. Methods We conducted 6 single-day surveys from January 2018 to February 2019 in 7 academic hospital MICUs with established CHG patient bathing. Adult patients were eligible to have skin swabbed from adjacent 25 cm2 areas on the neck, axilla, and inguinal region for culture and CHG concentration determination. CHG skin concentrations were measured by a semi-quantitative colorimetric assay. Selective media were used to isolate targeted microorganisms (Table 1). Species were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry; antibiotic susceptibility was determined by MicroScan (Beckman Coulter). We modeled the relationship between CHG skin concentrations (log2-transformed) and microorganism recovery (yes/no as primary outcome) using multilevel models controlling for clustering of body sites within patients and within ICUs, assessing slope and threshold effects. Results We enrolled 736/759 (97%) patients and sampled 2176 skin sites. Gram-positive bacteria were detected most frequently (Table 1). The adjusted odds of identifying gram-positive organisms decreased linearly as CHG skin levels increased (Figure 1a), without evidence of a threshold effect. We also found significant negative linear slopes without evidence of threshold effects for other pathogens tested (Table 2; Figure 1), with the exception of gram-negative bacteria and vancomycin-resistant enterococci. When modeling quantitative culture results (colony-forming units) for gram-positive organisms as a continuous outcome variable, a similar relationship was found. Conclusion Higher concentrations of CHG were associated with less frequent recovery of gram-positive bacteria and Candida species on the skin of MICU patients who were bathed routinely with CHG. For microbial inhibition, we did not identify a threshold concentration of CHG on the skin; rather, increasing CHG skin concentrations led to additional gains in inhibition. For infection prevention, aiming for high CHG skin levels may be beneficial. Disclosures All authors: No reported disclosures
Recommended from our members
895. Impact of Measurement and Results Feedback of Chlorhexidine Gluconate (CHG) Skin Concentrations in Medical Intensive Care Unit (MICU) Patients Receiving CHG Bathing
Abstract Background Higher CHG skin levels may be needed to adequately control infection and transmission of pathogens in the ICU. We assessed whether measurement and feedback of patient CHG skin concentrations could improve CHG bathing quality and identified factors associated with higher CHG skin concentrations. Methods We conducted 6 one-day surveys from January 2018 to February 2019 in 7 academic hospital MICUs with established daily CHG bathing. Adults admitted >1 day were assessed for CHG skin levels with a semi-quantitative colorimetric assay using swabbed 25 cm2 areas of anterior neck, axilla, and inguinal skin. Prior to survey 4, results from the first 3 surveys (baseline) were reported to ICU leadership and front-line staff to retrain and reeducate on bathing technique. Feedback of results from prior surveys also occurred before surveys 5 and 6. For statistical analysis, mixed-effects models accounted for clustering of CHG measurements within patients and ICUs. We categorized CHG product type as “cloth” for no-rinse 2% CHG-impregnated cloth and “liquid” for 4% CHG liquid or foam. Results In total, 681 of 704 (97%) patients were enrolled. Three ICUs used CHG cloth, 3 ICUs used CHG liquid, and 1 ICU switched from liquid to cloth after the second survey. Median CHG skin concentrations were higher in both the baseline and feedback period for institutions using CHG cloth, as compared with liquid (table). Across all time points, axillary and inguinal regions had higher skin CHG concentrations than the neck (median 39.1, 78.1, 19.5 µg/mL, respectively, P < 0.001). After controlling for age, mechanical ventilation, presence of a central venous catheter, body site, and hours since last CHG bath, institutions that used CHG cloth had a 3-fold increase in adjusted CHG skin concentrations in the feedback period compared with the baseline period (P = 0.001, Figure). There was no significant change in CHG skin concentrations from baseline to feedback period for institutions that used liquid CHG. Conclusion CHG skin concentrations on MICU patients receiving daily CHG bathing varied by body site and CHG product type. The use of CHG cloth was associated with higher CHG skin levels, compared with CHG liquid. For ICUs using CHG cloth, feedback of CHG skin concentration results to ICU staff improved CHG bathing quality. Disclosures All Authors: No reported Disclosures
Antibodies in healthcare personnel following severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) infection
In a prospective cohort of healthcare personnel (HCP), we measured severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) nucleocapsid IgG antibodies after SARS-CoV-2 infection. Among 79 HCP, 68 (86%) were seropositive 14-28 days after their positive PCR test, and 54 (77%) of 70 were seropositive at the 70-180-day follow-up. Many seropositive HCP (95%) experienced an antibody decline by the second visit