3 research outputs found
Targeted Inactivation of the mecB Gene, Encoding Cystathionine-γ-Lyase, Shows that the Reverse Transsulfuration Pathway Is Required for High-Level Cephalosporin Biosynthesis inAcremonium chrysogenum C10 but Not for Methionine Induction of the Cephalosporin Genes
[EN] Targeted gene disruption efficiency in Acremonium chrysogenum was increased 10-fold by applying the double-marker enrichment technique to this filamentous fungus. Disruption of themecB gene by the double-marker technique was achieved in 5% of the transformants screened. Mutants T6 and T24, obtained by gene replacement, showed an inactive mecB gene by Southern blot analysis and no cystathionine-γ-lyase activity. These mutants exhibited lower cephalosporin production than that of the control strain, A. chrysogenum C10, in MDFA medium supplemented with methionine. However, there was no difference in cephalosporin production between parental strain A. chrysogenum C10 and the mutants T6 and T24 in Shen's defined fermentation medium (MDFA) without methionine. These results indicate that the supply of cysteine through the transsulfuration pathway is required for high-level cephalosporin biosynthesis but not for low-level production of this antibiotic in methionine-unsupplemented medium. Therefore, cysteine for cephalosporin biosynthesis in A. chrysogenum derives from the autotrophic (SH2) and the reverse transsulfuration pathways. Levels of methionine induction of the cephalosporin biosynthesis gene pcbC were identical in the parental strain and the mecB mutants, indicating that the induction effect is not mediated by cystathionine-γ-lyase.SIThis work was supported by a grant of the CICYT (BIO97-0289-C02-01). We thank A. Paszewski for providing Aspergillus nidulansstrains M63 and C47 and M. Mediavilla, B. Martı́n, R. Barrientos, and M. Corrales for excellent technical assistance
Modeling Dynamics of Human Gut Microbiota Derived from Gluten Metabolism: Obtention, Maintenance and Characterization of Complex Microbial Communities
[EN] Western diets are rich in gluten-containing products, which are frequently poorly digested. The human large intestine harbors microorganisms able to metabolize undigested gluten fragments that have escaped digestion by human enzymatic activities. The aim of this work was obtaining and culturing complex human gut microbial communities derived from gluten metabolism to model the dynamics of healthy human large intestine microbiota associated with different gluten forms. For this purpose, stool samples from six healthy volunteers were inoculated in media containing predigested gluten or predigested gluten plus non-digested gluten. Passages were carried out every 24 h for 15 days in the same medium and community composition along time was studied via V3–V4 16S rDNA sequencing. Diverse microbial communities were successfully obtained. Moreover, communities were shown to be maintained in culture with stable composition for 14 days. Under non-digested gluten presence, communities were enriched in members of Bacillota, such as Lachnospiraceae, Clostridiaceae, Streptococcaceae, Peptoniphilaceae, Selenomonadaceae or Erysipelotrichaceae, and members of Actinomycetota, such as Bifidobacteriaceae and Eggerthellaceae. Contrarily, communities exposed to digested gluten were enriched in Pseudomonadota. Hence, this study shows a method for culture and stable maintenance of gut communities derived from gluten metabolism. This method enables the analysis of microbial metabolism of gluten in the gut from a community perspectiveSIThis research was funded by Junta de Castilla y León, grant number LE015P20, and Ministerio de Ciencia e Innovación, grant PID2020-119044GB-I00. Y.C.M. received a grant from Conserjería de Educación of Junta de Castilla y León, co-funded by the European Social Fund (Orden de 12 de diciembre de 2019
Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase
[EN] A 28.7-kb DNA region containing the gdhA gene of Aspergillus awamori was cloned from a genomic DNA library. A fragment of 2570 nucleotides was sequenced that contained ORF1, of 1380 bp, encoding a protein of 460 amino acids (Mr 49.4 kDa). The encoded protein showed high similarity to the NADP-dependent glutamate dehydrogenases of different organisms. The cloned gene was functional since it complemented two different Aspergillus nidulans gdhA mutants, restoring high levels of NADP-dependent glutamate dehydrogenase to the transformants. The A. awamori gdhA gene was located by pulsed-field gel electrophoresis in a 5.5-Mb band (corresponding to a doublet of chromosomes II and III), and was transcribed as a monocistronic transcript of 1.7 kb. Transcript levels of the gdhA gene were very high during the rapid growth phase and decreased drastically after 48 h of cultivation. Very high expression levels of the gdhA gene were observed in media with ammonium or asparagine as the nitrogen source, whereas glutamic acid repressed transcription of the gdhA gene. These results indicate that expression of the gdhA gene is subject to a strong nitrogen regulation at the transcriptional level.SIThis work was supported by a grant of URQUIMA, S. A. (Barcelona, Spain). We thank Francisco J. Fernández and Ana T. Marcos for helpful discussions, and B. Martín and M. Corrales for excellent technical assistanc