148 research outputs found

    From Corona Lockdown to Post-Corona Quiz Town

    Get PDF

    Mapping Enzymatic Catalysis using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    Get PDF
    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be 18.3±3.518.3\pm 3.5 kcal mol1^{-1} for MP2/cc-pVDZ and 19.3±3.619.3\pm 3.6 for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively.Comment: SI not attache

    Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    Get PDF
    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase

    Electronic Energy Transfer in Polarizable Heterogeneous Environments:a Systematic Investigation of Different Quantum Chemical Approaches

    Get PDF
    Theoretical prediction of transport and optical properties of protein–pigment complexes is of significant importance when aiming at understanding the structure–function relationship in such systems. Electronic energy transfer (EET) couplings represent a key property in this respect since such couplings provide important insight into the strength of interaction between photoactive pigments in protein–pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding model has been suggested (Curutchet, C., et al. <i>J. Chem. Theory Comput.</i>, 2009, <i>5</i>, 1838–1848). In this work, we further develop this computational model by extending it with an ab initio derived polarizable force field including higher-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made, for example, the explicit use of transition densities in the calculation of the electronic couplings, and also when including the explicit environment contribution, can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions

    Using a Genetic Algorithm to Find Molecules with Good Docking Scores

    Get PDF
    A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking scores as estimated by the Glide software package, starting from randomly chosen molecules from the ZINC database, for four different targets: Bacillus subtilis chorismate mutase (CM), human β2-adrenergic G protein-coupled receptor (β2AR), the DDR1 kinase domain (DDR1), and β-cyclodextrin (BCD). By the combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility (SA) score our approach identifies between ca 500 and 6,000 structurally diverse molecules with scores better than known binders by screening a total of 400,000 molecules starting from 8,000 randomly selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database identifies significantly more molecules with better docking scores than known binders, with the exception of CM, where the conventional screening approach only identifies 60 compounds compared to 511 with GA+Filter+SA. In the case of β2AR and DDR1, the GA+Filter+SA approach finds significantly more molecules with docking scores lower than −9.0 and −10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set of synthetically accessible molecules with very good docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral

    Hybrid RHF/MP2 geometry optimizations with the Effective Fragment Molecular Orbital Method

    Get PDF
    The frozen domain effective fragment molecular orbital method is extended to allow for the treatment of a single fragment at the MP2 level of theory. The approach is applied to the conversion of chorismate to prephenate by chorismate mutase, where the substrate is treated at the MP2 level of theory while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to a smoother convergence with respect to the basis set for the reaction profile. For double zeta basis sets the increase in CPU time relative to RHF is roughly a factor of two.Comment: 11 pages, 3 figure

    Combining Polarizable Embedding with the Frenkel exciton model:Applications to absorption spectra with overlapping solute-solvent bands

    Get PDF
    Modeling of spectral properties of extended chemical systems, such as the case of a solute in a solvent, is often performed based on so-called hybrid models in which only part of the complete system is given a quantum chemical description. The remaining part of the system is represented by an embedding potential treating the environment either by a discrete or continuum model. In order to successfully make use of minimally sized quantum chemical regions, theembedding potential should represent the environment as authentic as possible. Here, the importance of exactly such an accurate description of the embedding potential is investigated by comparing the performance of the Polarizable Embedding scheme against larger sized full quantum mechanical calculations. Our main conclusion is that as long as the solute and solvent do not overlap in their absorption spectra, the Polarizable Embedding approach shows results consistent with full quantum chemical calculations. For partly overlapping absorption spectra the Polarizable Embedding approach can furthermore successfully be expanded within a Frenkel exciton approach based on only economical monomeric quantum chemical calculations. Thus, by extending the Polarizable Embedding scheme to the exciton picture it is possible to cover computations of the whole absorption spectrum andstill reduce the computational cost compared to costly cluster calculations.<br

    Fully Integrated Effective Fragment Molecular Orbital Method

    Get PDF
    In this work, the effective fragment potential (EFP) method is fully integrated (FI) into the fragment molecular orbital (FMO) method to produce an effective fragment molecular orbital (EFMO) method that is able to account for all of the fundamental types of both bonded and intermolecular interactions, including many-body effects, in an accurate and efficient manner. The accuracy of the method is tested and compared to both the standard FMO method as well as to fully ab initio methods. It is shown that the FIEFMO method provides significant reductions in error while at the same time reducing the computational cost associated with standard FMO calculations by up to 96%

    A computational method for the systematic screening of reaction barriers in enzymes:searching for Bacillus circulans xylanase mutants with greater activity towards a synthetic substrate

    Get PDF
    We present a semi-empirical (PM6-based) computational method for systematically estimating the effect of all possible single mutants, within a certain radius of the active site, on the barrier height of an enzymatic reaction. The intent of this method is not a quantitative prediction of the barrier heights, but rather to identify promising mutants for further computational or experimental study. The method is applied to identify promising single and double mutants of Bacillus circulans xylanase (BCX) with increased hydrolytic activity for the artificial substrate ortho-nitrophenyl β-xylobioside (ONPX2). The estimated reaction barrier for wild-type (WT) BCX is 18.5 kcal/mol, which is in good agreement with the experimental activation free energy value of 17.0 kcal/mol extracted from the observed kcat using transition state theory (Joshi et al., 2001). The PM6 reaction profiles for eight single point mutations are recomputed using FMO-MP2/PCM/6-31G(d) single points. PM6 predicts an increase in barrier height for all eight mutants while FMO predicts an increase for six of the eight mutants. Both methods predict that the largest change in barrier occurs for N35F, where PM6 and FMO predict a 9.0 and 15.8 kcal/mol increase, respectively. We thus conclude that PM6 is sufficiently accurate to identify promising mutants for further study. We prepared a set of all theoretically possible (342) single mutants in which every amino acid of the active site (except for the catalytically active residues E78 and E172) was mutated to every other amino acid. Based on results from the single mutants we construct a set of 111 double mutants consisting of all possible pairs of single mutants with the lowest barrier for a particular position and compute their reaction profile. None of the mutants have, to our knowledge, been prepared experimentally and therefore present experimentally testable predictions
    corecore