27 research outputs found
Colonization of electrospun polycaprolactone fibers by relevant pathogenic bacterial strains
Electrospun biodegradable polymers have emerged as promising materials for their applications in several fields, including biomedicine and food industry. For this reason, the susceptibility of these materials to be colonized by different pathogens is a critical issue for public health, and their study can provide future knowledge to develop new strategies against bacterial infections. In this work, the ability of three pathogenic bacterial species (Pseudomonas aeruginosa, Acinetobacter baumannii, and Listeria monocytogenes) to adhere and form biofilm in electrospun polycaprolactone (PCL) microfibrous meshes was investigated. Bacterial attachment was analyzed in meshes with different microstructure, and comparisons with other materials (borosilicate glass and electrospun polylactic acid (PLA)) fibers were assessed. Analysis included colony forming unit (CFU) counts, scanning electron microscopy (SEM), and crystal violet (CV) staining. All the obtained data suggest that PCL meshes, regardless of their microstructure, are highly susceptible to be colonized by the pathogenic relevant bacteria used in this study, so a pretreatment or a functionalization with compounds that present some antimicrobial activity or antibiofilm properties is highly recommended before their application. Moreover, an experiment designed to simulate a chronic wound environment was used to demonstrate the ability of these meshes to detach biofilms from the substratum where they have developed, thus making them promising candidates to be used in wound cleaning and disinfection.European Union’s H2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement
no. 691095 and Junta de Castilla y Leon-FEDER
(projects BU079U16 and BU092U16)
Chiral selectivity of porphyrin-ZnO nanoparticle conjugates
Recognition of enantiomers is one of the most arduous challenges in chemical sensor development. Although several chiral systems exist, their effective exploitation as the sensitive layer in chemical sensors is hampered by several practical implications that hinder stereoselective recognition in solid state. In this paper, we report a new methodology to efficiently prepare chiral solid films, by using a hybrid material approach where chiral porphyrin derivatives are grafted onto zinc oxide nanoparticles. Circular dichroism (CD) evidences that the solid-state film of the material retains supramolecular chirality due to porphyrin interactions, besides an additional CD feature in correspondence of the absorbance of ZnO (375 nm), suggesting the induction of chirality in the underlying zinc oxide nanoparticles. The capability of hybrid material to detect and recognize vapors of enantiomer pairs was evaluated by fabricating gas sensors based on quartz microbalances. Chiral films of porphyrin on its own were used for comparison. The sensor based on functionalized nanostructures presented a remarkable stereoselectivity in the recognition of limonene enantiomers, whose ability to intercalate in the porphyrin layers makes this terpene an optimal chiral probe. The chiroptical and stereoselective properties of the hybrid material confirm that the use of porphyrin-capped ZnO nanostructures is a viable route for the formation of chiral selective surfaces. © 2019 American Chemical Society
Intellectual Property, Open Science and Research Biobanks
In biomedical research and translational medicine, the ancient war between exclusivity (private control over information) and access to information is proposing again on a new battlefield: research biobanks. The latter are becoming increasingly important (one of the ten ideas changing the world, according to Time magazine) since they allow to collect, store and distribute in a secure and professional way a critical mass of human biological samples for research purposes. Tissues and related data are fundamental for the development of the biomedical research and the emerging field of translational medicine: they represent the “raw material” for every kind of biomedical study. For this reason, it is crucial to understand the boundaries of Intellectual Property (IP) in this prickly context. In fact, both data sharing and collaborative research have become an imperative in contemporary open science, whose development depends inextricably on: the opportunities to access and use data, the possibility of sharing practices between communities, the cross-checking of information and results and, chiefly, interactions with experts in different fields of knowledge. Data sharing allows both to spread the costs of analytical results that researchers cannot achieve working individually and, if properly managed, to avoid the duplication of research. These advantages are crucial: access to a common pool of pre-competitive data and the possibility to endorse follow-on research projects are fundamental for the progress of biomedicine. This is why the "open movement" is also spreading in the biobank's field. After an overview of the complex interactions among the different stakeholders involved in the process of information and data production, as well as of the main obstacles to the promotion of data sharing (i.e., the appropriability of biological samples and information, the privacy of participants, the lack of interoperability), we will firstly clarify some blurring in language, in particular concerning concepts often mixed up, such as “open source” and “open access”. The aim is to understand whether and to what extent we can apply these concepts to the biomedical field. Afterwards, adopting a comparative perspective, we will analyze the main features of the open models – in particular, the Open Research Data model – which have been proposed in literature for the promotion of data sharing in the field of research biobanks.
After such an analysis, we will suggest some recommendations in order to rebalance the clash between exclusivity - the paradigm characterizing the evolution of intellectual property over the last three centuries - and the actual needs for access to knowledge. We argue that the key factor in this balance may come from the right interaction between IP, social norms and contracts. In particular, we need to combine the incentives and the reward mechanisms characterizing scientific communities with data sharing imperative
Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis
Background:
Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort.//
Methods:
We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2.//
Findings:
We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9–59·8; I2=77%), 60% (56–64; I2=35%) were women, and 80% (72–89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid β in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75–87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56–75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90–97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93–100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90–97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54–88; I2=89%), Lewy body disease (44%, 25–62; I2=77%), and cerebrovascular injury (42%, 24–60; I2=88%).//
Interpretation:
These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity
The risk of stroke recurrence in patients with atrial fibrillation and reduced ejection fraction
Abstract Background: Atrial fibrillation (AF) and congestive heart failure often coexist due to their shared risk factors leading to potential worse outcome, particularly cerebrovascular events. The aims of this study were to calculate the rates of ischemic and severe bleeding events in ischemic stroke patients having both AF and reduced ejection fraction (rEF) (⩽40%), compared to ischemic stroke patients with AF but without rEF. Methods: We performed a retrospective analysis that drew data from prospective studies. The primary outcome was the composite of either ischemic (stroke or systemic embolism), or hemorrhagic events (symptomatic intracranial bleeding and severe extracranial bleeding). Results: The cohort for this analysis comprised 3477 patients with ischemic stroke and AF, of which, 643 (18.3%) had also rEF. After a mean follow-up of 7.5 ± 9.1 months, 375 (10.8%) patients had 382 recorded outcome events, for an annual rate of 18.0%. While the number of primary outcome events in patients with rEF was 86 (13.4%), compared to 289 (10.2%) for the patients without rEF; on multivariable analysis rEF was not associated with the primary outcome (OR 1.25; 95% CI 0.84–1.88). At the end of follow-up, 321 (49.9%) patients with rEF were deceased or disabled (mRS ⩾3), compared with 1145 (40.4%) of those without rEF; on multivariable analysis, rEF was correlated with mortality or disability (OR 1.35; 95% CI 1.03–1.77). Conclusions: In patients with ischemic stroke and AF, the presence of rEF was not associated with the composite outcome of ischemic or hemorrhagic events over short-term follow-up but was associated with increased mortality or disability