3 research outputs found
Recommended from our members
Low Emissions Combustor Test and Research Facility
The Morgantown Energy Technology Center (METC) recently built and began operation of a Low Emissions Combustor Test and Research (LECTR) facility with the primary objective of providing test facilities and engineering support to METC customers through programs such as the Advanced Turbine Systems (ATS) University-Industry Consortium and through CRADA participation with industrial partners. The LECTR is a versatile test facility with capabilities for evaluating a variety of low emissions combustion concepts at temperatures and pressures representative of gas turbine applications. The LECTR design incorporates a set of flanged sections or modules including an inlet plelnum, combustor test sections, a gas sampling section, and a quench section. The high pressure and mass flow capabilities of the LECTR facility make it uniquely suited for evaluation of advanced combustion concepts at combustion scales up to 3 MW (10 MMBtu/h)
Recommended from our members
CRADA opportunities in pressurized combustion research
The Morgantown Energy Technology Center recently began operation of a Low Emissions Combustor Test and Research (LECTR) Facility. This facility was built to support the development of Advanced Gas Turbine Systems (ATS) by providing test facilities and engineering support to METC customers through the ATS University-Industry Consortiu and through CRADA participation with industrial partners. The LECTR is a versatile test facility with capabilities for evaluating a variety of low emissions combustion concepts at temperatures and pressures representative of gas turbine applications. The LECTR was constructed as a mid-scale test platform to support DOE`s ATS program and utilizes the full range of high pressure (up to 30 atm) high temperature (1000{degrees}F air preheat, 3300{degrees}F combustor wall), and mass flows (3.5 lb/s combustion air) available in METC`s Advanced Combustion Facility. The LECTR is now operational and has most recently been employed to characterize the operating and emissions characteristics of an industrical-scale, lean premixed gas burner at elevated pressures for potential gas turbine applications