4 research outputs found

    Rapid and accurate method for quantifying busulfan in plasma samples by isocratic liquid chromatography-tandem mass spectrometry (LC-MS/MS)

    Get PDF
    Objectives: Administration of busulfan is extending rapidly as a part of a conditioning regimen in patients undergoing hematopoietic stem cell transplantation (HSCT). Monitoring blood plasma levels of busulfan is recommended for identifying the optimal dose in patients and for minimizing toxicity. The aim of this research was to validate a simple, rapid, and cost-effective analytical tool for measuring busulfan in human plasma that would be suitable for routine clinical use. This novel tool was based on liquid chromatography coupled to mass spectrometry. Methods: Human plasma samples were prepared using a one-step protein precipitation protocol. These samples were then resolved by isocratic elution in a C18 column. The mobile phase consisted 2 mM ammonium acetate and 0.1% formic acid dissolved in a 30:70 ratio of methanol/water. Busulfan-d8 was used as the internal standard. Results: The run time was optimized at 1.6 min. Standard curves were linear from 0.03 to 5 mg/L. The coefficient of variation (%CV) was less than 8%. The accuracy of this method had an acceptable bias that fell within 85-115% range. No interference between busulfan and the interfering compound hemoglobin, lipemia, or bilirubin not even at the highest concentrations of compound was tested. Neither carryover nor matrix effects were observed using this method. The area under the plasma drug concentration-time curves obtained for 15 pediatric patients who received busulfan therapy prior to HSCT were analyzed and correlated properly with the administered doses. Conclusions: This method was successfully validated and was found to be robust enough for therapeutic drug monitoring in a clinical setting

    Assessing Liver Fibrosis Using the FIB4 Index in the Community Setting

    Get PDF
    Liver disease is frequently asymptomatic, challenging early identification in the primary care setting. The fibrosis 4 (FIB4) index is a liver fibrosis biomarker that is a potential alternative to liver biopsy for diagnosing and managing liver disease. This study aimed to calculate the FIB4 index for screening individuals at high risk of liver disease at the community level. This was a retrospective real-world study analyzing blood and serum test results from a central laboratory. The primary outcome was the number of individuals within each risk category for hepatic fibrosis: high risk (FIB4 ≥ 3.25) and low risk (FIB4 < 1.3). The analysis included samples from 31,753 patients, of which 18,102 were aged 40 to 75 years. In these patients, the FIB4 index had been explicitly requested in 1852 (10.2%) cases and estimated ad hoc in the rest. Of the 263 (1.5%) cases with FIB4 ≥ 3.25, the FIB4 index was requested in 46 (17.5%), and 52 (19.8%) showed evidence of liver fibrosis in their medical records, while the rest did not report any data regarding liver fibrosis. FIB4 is a simple score that can play a role as a "red flag" for early identification of patients at high risk of advanced liver fibrosis and their referral to specialized care

    Significant Improvement in Diagnosis of Hepatitis C Virus Infection by a One-Step Strategy in a Central Laboratory : an Optimal Tool for Hepatitis C Elimination?

    Get PDF
    The remarkable effectivity of current antiviral therapies has led to consider the elimination of hepatitis C virus (HCV) infection. However, HCV infection is highly underdiagnosed; therefore, a global strategy for eliminating it requires improving the effectiveness of HCV diagnosis to identify hidden cases. The remarkable effectivity of current antiviral therapies has led to consider the elimination of hepatitis C virus (HCV) infection. However, HCV infection is highly underdiagnosed; therefore, a global strategy for eliminating it requires improving the effectiveness of HCV diagnosis to identify hidden cases. In this study, we assessed the effectiveness of a protocol for HCV diagnosis based on viral load reflex testing of anti-HCV antibody-positive patients (known as one-step diagnosis) by analyzing all diagnostic tests performed by a central laboratory covering an area of 1.5 million inhabitants in Barcelona, Spain, before (83,786 cases) and after (45,935 cases) the implementation of the reflex testing protocol. After its implementation, the percentage of anti-HCV-positive patients with omitted HCV RNA determination remarkably decreased in most settings, particularly in drug treatment centers and primary care settings, where omitted HCV RNA analyses had absolute reductions of 76.4 and 20.2%, respectively. In these two settings, the percentage of HCV RNA-positive patients identified as a result of reflex testing accounted for 55 and 61% of all anti-HCV-positive patients. HCV RNA results were provided in a mean of 2 days. The presence of HCV RNA and age of ≥65 years were significantly associated with advanced fibrosis, assessed using the serological FIB-4 index (odds ratio [OR], 5.92; 95% confidence interval [CI], 3.4 to 10.4). The implementation of viral load reflex testing in a central laboratory is feasible and significantly increases the diagnostic effectiveness of HCV infections, while allowing the identification of underdiagnosed cases

    Cross-sectional evaluation of circulating hepatitis B virus RNA and DNA : Different quasispecies?

    No full text
    Different forms of pregenomic and other hepatitis B virus (HBV) RNA have been detected in patients' sera. These circulating HBV-RNAs may be useful for monitoring covalently closed circular DNA activity, and predicting hepatitis B e-antigen seroconversion or viral rebound after nucleos(t)ide analog cessation. Data on serum HBV-RNA quasispecies, however, is scarce. It is therefore important to develop methodologies to thoroughly analyze this quasispecies, ensuring the elimination of any residual HBV-DNA. Studying circulating HBV-RNA quasispecies may facilitate achieving functional cure of HBV infection. To establish a next-generation sequencing (NGS) methodology for analyzing serum HBV-RNA and comparing it with DNA quasispecies. Thirteen untreated chronic hepatitis B patients, showing different HBV-genotypes and degrees of severity of liver disease were enrolled in the study and a serum sample with HBV-DNA > 5 LogIU/mL and HBV-RNA > 4 Logcopies/mL was taken from each patient. HBV-RNA was treated with DNAse I to remove any residual DNA, and the region between nucleotides (nt) 1255-1611 was amplified using a 3-nested polymerase chain reaction protocol, and analyzed with NGS. Variability/conservation and complexity was compared between HBV-DNA and RNA quasispecies. No HBV-DNA contamination was detected in cDNA samples from HBV-RNA quasispecies. HBV quasispecies complexity showed heterogeneous behavior among patients. The Rare Haplotype Load at 1% was greater in DNA than in RNA quasispecies, with no statistically significant differences (P = 0.1641). Regarding conservation, information content was equal in RNA and DNA quasispecies in most nt positions [218/357 (61.06%)]. In 102 of the remaining 139 (73.38%), HBV-RNA showed slightly higher variability. Sliding window analysis identified 4 hyper-conserved sequence fragments in each quasispecies, 3 of them coincided between the 2 quasispecies: nts 1258-1286, 1545-1573 and 1575-1604. The 2 hyper-variable sequence fragments also coincided: nts 1311-1344 and 1461-1485. Sequences between nts 1519-1543 and 1559-1587 were only hyper-conserved in HBV-DNA and RNA, respectively. Our methodology allowed analyzing HBV-RNA quasispecies complexity and conservation without interference from HBV-DNA. Thanks to this, we have been able to compare both quasispecies in the present study
    corecore