3 research outputs found

    Anisotropic Unruh temperatures

    Get PDF
    The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Facultad de Ciencias ExactasInstituto de Física La Plat

    Local temperatures and local terms in modular Hamiltonians

    Get PDF
    We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, especially the ones affecting null directions. For regions with any number of intervals in two spacetime dimensions, the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically that this is the case for free massive scalar and Dirac fields. In dimensions d≥3, the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field, we classify the structure of the local terms.Instituto de Física La Plat

    No cosmological domain wall problem for weakly coupled fields

    Get PDF
    After inflation occurs, a weakly coupled scalar field will in general not be in thermal equilibrium but have a distribution of values determined by the inflationary Hubble parameter. If such a field subsequently undergoes discrete symmetry breaking, then the different degenerate vacua may not be equally populated so the domain walls which form will be `biased' and the wall network will subsequently collapse. Thus the cosmological domain wall problem may be solved for sufficiently weakly coupled fields in a post-inflationary universe. We quantify the criteria for determining whether this does happen, using a Higgs-like potential with a spontaneously broken Z2Z_2 symmetry.Comment: 17 pages, 4 figures (Revtex), clarifying Comments added in Introduction; to appear in Phys. Rev
    corecore