7 research outputs found

    Particle Physics Probes Of Extra Spacetime Dimensions

    Full text link
    The possibility that spacetime is extended beyond the familiar 3+1-dimensions has intrigued physicists for a century. Indeed, the consequences of a dimensionally richer spacetime would be profound. Recently, new theories with higher dimensional spacetimes have been developed to resolve the hierarchy problem in particle physics. These scenarios make distinct predictions which allow for experiment to probe the existence of extra dimensions in new ways. We review the conceptual framework of these scenarios, their implications in collider and short-range gravity experiments, their astrophysical and cosmological effects, as well as the constraints placed on these models from present data.Comment: Submitted to Annual Review of Nuclear and Particle Science, 29 page

    Trapping colloids near chemical stripes via critical Casimir forces

    Get PDF
    We study theoretically and experimentally the solvent-mediated critical Casimir force acting on colloidal particles immersed in a binary liquid mixture of water and 2,6-lutidine and close to substrates which are chemically patterned with periodically alternating stripes of antagonistic adsorption preferences. These patterns are experimentally realized via microcontact printing. Upon approaching the critical demixing point of the solvent, normal and lateral critical Casimir forces generate laterally confining effective potentials for the colloids. We analyze in detail the rich behavior of the spherical colloids close to such substrates. For all patterned substrates we investigated, our measurements of these effective potentials agree with the corresponding theoretical predictions. Since both the directions and the strengths of the critical Casimir forces can be tuned by minute temperature changes, this provides a new mechanism for controlling colloids as model systems, opening encouraging perspectives for applications.Comment: Invited contribution to Molecular Physics Special Issue on Bob Evans' 65th birthda

    Towards a realistic interpretation of quantum mechanics providing a model of the physical world

    Full text link
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from Copenhagen to many worlds are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave-particle du- ality and the Bell inequalities are analyzed. The sketch of a realistic picture of the quantum world is presented. It rests upon the assump- tion that quantum mechanics is a stochastic theory whose randomness derives from the existence of vacuum fields. They correspond to the vacuum fluctuations of quantum field theory, but taken as real rather than virtual.Comment: 43 pages, paper throughout revised and somewhat enlarged, sections on the Bell inequalities and on the sketch of a picture of the quantum world rewritten, new references adde
    corecore