22 research outputs found

    Enhancing Agent Communication and Learning through Action and Language

    Full text link
    We introduce a novel category of GC-agents capable of functioning as both teachers and learners. Leveraging action-based demonstrations and language-based instructions, these agents enhance communication efficiency. We investigate the incorporation of pedagogy and pragmatism, essential elements in human communication and goal achievement, enhancing the agents' teaching and learning capabilities. Furthermore, we explore the impact of combining communication modes (action and language) on learning outcomes, highlighting the benefits of a multi-modal approach.Comment: IMOL workshop, Paris 202

    Virtual camera synthesis for soccer game replays

    Get PDF
    International audienceIn this paper, we present a set of tools developed during the creation of a platform that allows the automatic generation of virtual views in a live soccer game production. Observing the scene through a multi-camera system, a 3D approximation of the players is computed and used for the synthesis of virtual views. The system is suitable both for static scenes, to create bullet time effects, and for video applications, where the virtual camera moves as the game plays

    Evaluation of PET quantitation accuracy among multiple discovery IQ PET/CT systems via NEMA image quality test

    Get PDF
    Introduction: Quantitative imaging biomarkers are becoming usual in oncology for assessing therapy response. The harmonization of image quantitation reporting has become of utmost importance due to the multi-center trials increase. The NEMA image quality test is often considered for the evaluation of quantitation and is more accurate with a radioactive solid phantom that reduces variability. The goal of this project is to determine the level of variability among imaging centers if acquisition and imaging protocol parameters are left to the center's preference while all other parameters are fixed including the scanner type. Methods: A NEMA-IQ phantom filled with radioactive Ge-68 solid resin was imaged in five clinical sites throughout Europe. Sites reconstructed data with OSEM and BSREM algorithms applying the sites' clinical parameters. Images were analyzed according with the NEMA-NU2-2012 standard using the manufacturer-provided NEMA tools to calculate contrast recovery (CR) and background variability (BV) for each sphere and the lung error (LE) estimation. In addition, a F-18-filled NEMA-IQ phantom was also evaluated to obtain a gauge for variability among centers when the sites were provided with identical specific instructions for acquisition and reconstruction protocol (the aggregate of data from 12 additional sites is presented). Results: The data using the Ge-68 solid phantom showed no statistical differences among different sites, proving a very good reproducibility among the PET center models even if dispersion of data is higher with OSEM compared to BSREM. Furthermore, BSREM shows better CR and comparable BV, while LE is slightly reduced. Two centers exhibit significant differences in CR and BV values for the F-18 NEMA NU2-2012 experiments; these outlier results are explained. Conclusion: The same PET system type from the various sites produced similar quantitative results, despite allowing each site to choose their clinical protocols with no restriction on data acquisition and reconstruction parameters. BSREM leads to lower dispersion of quantitative data among different sites. A solid radioactive phantom may be recommended to qualify the sites to perform quantitative imaging

    Towards Teachable Autonomous Agents

    Get PDF
    Autonomous discovery and direct instruction are two extreme sources of learning in children, but educational sciences have shown that intermediate approaches such as assisted discovery or guided play resulted in better acquisition of skills. When turning to Artificial Intelligence, the above dichotomy can be translated into the distinction between autonomous agents, which learn in isolation from their own signals, and interactive learning agents which can be taught by social partners but generally lack autonomy. In between should stand teachable autonomous agents: agents that learn from both internal and teaching signals to benefit from the higher efficiency of assisted discovery processes. Designing such agents could result in progress in two ways. First, very concretely, it would offer a way to non-expert users in the real world to drive the learning behavior of agents towards their expectations. Second, more fundamentally, it might be a key step to endow agents with the necessary capabilities to reach general intelligence. The purpose of this paper is to elucidate the key obstacles standing in the way towards the design of such agents. We proceed in four steps. First, we build on a seminal work of Bruner to extract relevant features of the assisted discovery processes happening between a child and a tutor. Second, we highlight how current research on intrinsically motivated agents is paving the way towards teachable and autonomous agents. In particular, we focus on autotelic agents, i.e. agents equipped with forms of intrinsic motivations that enable them to represent, self-generate and pursue their own goals. We argue that such autotelic capabilities from the learner side are key in the discovery process. Third, we adopt a social learning perspective on the interaction between a tutor and a learner to highlight some components that are currently missing to these agents before they can be taught by ordinary people using natural pedagogy. Finally, we provide a list of specific research questions that emerge from the perspective of extending these agents with assisted learning capabilities

    Pragmatically Learning from Pedagogical Demonstrations in Multi-Goal Environments

    Full text link
    Learning from demonstration methods usually leverage close to optimal demonstrations to accelerate training. By contrast, when demonstrating a task, human teachers deviate from optimal demonstrations and pedagogically modify their behavior by giving demonstrations that best disambiguate the goal they want to demonstrate. Analogously, human learners excel at pragmatically inferring the intent of the teacher, facilitating communication between the two agents. These mechanisms are critical in the few demonstrations regime, where inferring the goal is more difficult. In this paper, we implement pedagogy and pragmatism mechanisms by leveraging a Bayesian model of goal inference from demonstrations. We highlight the benefits of this model in multi-goal teacher-learner setups with two artificial agents that learn with goal-conditioned Reinforcement Learning. We show that combining a pedagogical teacher and a pragmatic learner results in faster learning and reduced goal ambiguity over standard learning from demonstrations, especially in the few demonstrations regime

    Coherent Background Video Inpainting through Kalman Smoothing along Trajectories

    Get PDF
    International audienceVideo inpainting consists in recovering the missing or corrupted parts of an image sequence so that the reconstructed sequence looks natural. For each frame, the reconstruction has to be spatially coherent with the rest of the image and temporally with respect to the reconstructions of adjacent frames. There have been many methods proposed in the recent years. Most of them only focus on inpainting foreground objects moving with a periodic motion and consider that the background is almost static. In this paper we address the problem of background inpainting and propose a method that handles dynamic background (illumination changes, moving camera, dynamic textures...). The algorithm starts by applying an image inpainting technique to each frame of the sequence and then temporally smoothes these reconstructions through Kalman smoothing along the estimated trajectories of the unknown points. The computation of the trajectories relies on the estimation of forward and backward dense optical flow fields. Several experiments and comparisons demonstrate the performance of the proposed approach. \
    corecore