5 research outputs found
Conformal Curves in Potts Model: Numerical Calculation
We calculated numerically the fractal dimension of the boundaries of the
Fortuin-Kasteleyn clusters of the -state Potts model for integer and
non-integer values of on the square lattice.
In addition we calculated with high accuracy the fractal dimension of the
boundary points of the same clusters on the square domain. Our calculation
confirms that this curves can be described by SLE.Comment: 11 Pages, 4 figure
Critical interfaces of the Ashkin-Teller model at the parafermionic point
We present an extensive study of interfaces defined in the Z_4 spin lattice
representation of the Ashkin-Teller (AT) model. In particular, we numerically
compute the fractal dimensions of boundary and bulk interfaces at the
Fateev-Zamolodchikov point. This point is a special point on the self-dual
critical line of the AT model and it is described in the continuum limit by the
Z_4 parafermionic theory. Extending on previous analytical and numerical
studies [10,12], we point out the existence of three different values of
fractal dimensions which characterize different kind of interfaces. We argue
that this result may be related to the classification of primary operators of
the parafermionic algebra. The scenario emerging from the studies presented
here is expected to unveil general aspects of geometrical objects of critical
AT model, and thus of c=1 critical theories in general.Comment: 15 pages, 3 figure
Critical domain walls in the Ashkin-Teller model
We study the fractal properties of interfaces in the 2d Ashkin-Teller model.
The fractal dimension of the symmetric interfaces is calculated along the
critical line of the model in the interval between the Ising and the
four-states Potts models. Using Schramm's formula for crossing probabilities we
show that such interfaces can not be related to the simple SLE, except
for the Ising point. The same calculation on non-symmetric interfaces is
performed at the four-states Potts model: the fractal dimension is compatible
with the result coming from Schramm's formula, and we expect a simple
SLE in this case.Comment: Final version published in JSTAT. 13 pages, 5 figures. Substantial
changes in the data production, analysis and in the conclusions. Added a
section about the crossing probability. Typeset with 'iopart