178 research outputs found
Numerical simulations versus theoretical predictions for a non-Gaussian noise induced escape problem in application to full counting statistics
A theoretical approach for characterizing the influence of asymmetry of noise distribution on the escape rate
of a multistable system is presented. This was carried out via the estimation of an action, which is defined as
an exponential factor in the escape rate, and discussed in the context of full counting statistics paradigm. The
approach takes into account all cumulants of the noise distribution and demonstrates an excellent agreement with
the results of numerical simulations. An approximation of the third-order cumulant was shown to have limitations
on the range of dynamic stochastic system parameters. The applicability of the theoretical approaches developed
so far is discussed for an adequate characterization of the escape rate measured in experiments
Gut-brain axis: does intestinal inflammation affect hippocampal neurogenesis and medulloblastoma development?
Long‐term effects of ionizing radiation on the hippocampus: Linking effects of the sonic hedgehog pathway activation with radiation response
Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long‐term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation‐induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/−). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long‐term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio‐induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/− mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio‐induced injury
Role of Apolipoprotein E in the Hippocampus and Its Impact following Ionizing Radiation Exposure
Apolipoprotein E (ApoE) is a lipid carrier in both the peripheral and the central nervous systems (CNSs). Lipid-loaded ApoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and brain injury repair. In the brain, ApoE is produced predominantly by astrocytes, but it is also abundantly expressed in most neurons of the CNS. In this study, we addressed the role of ApoE in the hippocampus in mice, focusing on its role in response to radiation injury. To this aim, 8-week-old, wild-type, and ApoE-deficient (ApoE−/−) female mice were acutely whole-body irradiated with 3 Gy of X-rays (0.89 Gy/min), then sacrificed 150 days post-irradiation. In addition, age-matching ApoE−/− females were chronically whole-body irradiated (20 mGy/d, cumulative dose of 3 Gy) for 150 days at the low dose-rate facility at the Institute of Environmental Sciences (IES), Rokkasho, Japan. To seek for ApoE-dependent modification during lineage progression from neural stem cells to neurons, we have evaluated the cellular composition of the dentate gyrus in unexposed and irradiated mice using stage-specific markers of adult neurogenesis. Our findings indicate that ApoE genetic inactivation markedly perturbs adult hippocampal neurogenesis in unexposed and irradiated mice. The effect of ApoE inactivation on the expression of a panel of miRNAs with an established role in hippocampal neurogenesis, as well as its transcriptional consequences in their target genes regulating neurogenic program, have also been analyzed. Our data show that the absence of ApoE−/− also influences synaptic functionality and integration by interfering with the regulation of mir-34a, mir-29b, and mir-128b, leading to the downregulation of synaptic markers PSD95 and synaptophysin mRNA. Finally, compared to acute irradiation, chronic exposure of ApoE null mice yields fewer consequences except for the increased microglia-mediated neuroinflammation. Exploring the function of ApoE in the hippocampus could have implications for developing therapeutic approaches to alleviate radiation-induced brain injury
Involvement of Mitochondria in the Selective Response to Microsecond Pulsed Electric Fields on Healthy and Cancer Stem Cells in the Brain
In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 μs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells
Dosimetry for repetitive transcranial magnetic stimulation: a translational study from Alzheimer’s disease patients to controlled in vitro investigations
Objective. Recent studies have indicated that repetitive transcranial magnetic stimulation (rTMS) could enhance cognition in Alzheimer’s Disease (AD) patients, but to now the molecular-level interaction mechanisms driving this effect remain poorly understood. While cognitive scores have been the primary measure of rTMS effectiveness, employing molecular-based approaches could offer more precise treatment predictions and prognoses. To reach this goal, it is fundamental to assess the electric field (E-field) and the induced current densities (J) within the stimulated brain areas and to translate these values to in vitro systems specifically devoted in investigating molecular-based interactions of this stimulation. Approach. This paper offers a methodological procedure to guide dosimetric assessment to translate the E-field induced in humans (in a specific pilot study) into in vitro settings. Electromagnetic simulations on patients’ head models and cellular holders were conducted to characterize exposure conditions and determine necessary adjustments for in vitro replication of the same dose delivered in humans using the same stimulating coil. Main results. Our study highlighted the levels of E-field and J induced in the target brain region and showed that the computed E-field and J were different among patients that underwent the treatment, so to replicate the exposure to the in vitro system, we have to consider a range of electric quantities as reference. To match the E-field to the levels calculated in patients’ brains, an increase of at least the 25% in the coil feeding current is necessary when in vitro stimulations are performed. Conversely, to equalize current densities, modifications in the cells culture medium conductivity have to be implemented reducing it to one fifth of its value. Significance. This dosimetric assessment and subsequent experimental adjustments are essential to achieve controlled in vitro experiments to better understand rTMS effects on AD cognition. Dosimetry is a fundamental step for comparing the cognitive effects with those obtained by stimulating a cellular model at an equal dose rigorously evaluated
Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings
Astroglial Inhibition of NF-κB Does Not Ameliorate Disease Onset and Progression in a Mouse Model for Amyotrophic Lateral Sclerosis (ALS)
Motor neuron death in amyotrophic lateral sclerosis (ALS) is considered a “non-cell autonomous” process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1G93A ubiquitously and the dominant negative form of IκBα (IκBαAA) in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus
- …
