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A theoretical approach for characterizing the influence of asymmetry of noise distribution on the escape rate
of a multistable system is presented. This was carried out via the estimation of an action, which is defined as
an exponential factor in the escape rate, and discussed in the context of full counting statistics paradigm. The
approach takes into account all cumulants of the noise distribution and demonstrates an excellent agreement with
the results of numerical simulations. An approximation of the third-order cumulant was shown to have limitations
on the range of dynamic stochastic system parameters. The applicability of the theoretical approaches developed
so far is discussed for an adequate characterization of the escape rate measured in experiments.
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I. INTRODUCTION

Shot noise [1] characterizes transport properties of meso-
scopic conductors. Therefore, studying properties of the shot
noise is essential for understanding the behavior of the
mesoscopic carriers. The properties can be described by the full
counting statistics approach [2] which considers the third- and
higher-order cumulants, also known as irreducible correlators.
At the same time, first and second cumulants specify properties
of equilibrium symmetrical Johnson-Nyquist noise which is
different from the shot noise. Typically [1], the statistics of the
shot noise are characterized by a nonsymmetrical distribution,
e.g., binomial or Poisson. A scheme for a qualitative character-
ization of the distribution asymmetry via measurements of the
escape rate of an auxiliary multistable system driven by fluc-
tuations has been recently suggested [3,4]. The main idea was
to study the escape rate of a noise detector for characterization
of acting fluctuations which are the output of a mesoscopic
system. This scheme was extensively discussed in a number
of theoretical papers [5–7] and implemented experimentally
with the Josephson junction as a noise detector driven by
Poisson noise [8,9]. A combination of theoretical, numerical,
and experimental investigations was presented [10] showing
some correspondences and disagreements between the theory,
numerics, and experiment. However, despite the progress made
in the theoretical description of the short noise and, in turn,
properties of the noise-detector scheme, certain questions still
remain. For example, accuracy of the suggested theoretical
approaches was not validated by numerical simulations. There
are also certain disagreements between several published
theoretical approaches [7], thus resulting in controversy [11].
Notably, the reports indicate poor correspondence between
the theoretical and experimental results [7,10], and several
outstanding issues have been identified [7]. In particular, the
literature cited two important aspects: (i) validity of the use of a
third-order-cumulant approximation in theoretical approaches
and (ii) omission of the prefactor in the expression of the escape
rate [7]. There is, however, reported research [7] which places
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the scheme into a strong nonlinear regime for maximizing
distribution asymmetry.

In the majority of published papers, a similar theoretical
model of the noise-detector scheme has been used that
corresponds to a nonlinear oscillator driven by a mixture
of white Gaussian and Poisson noises. The presence of the
Poissonian process leads to asymmetry of the noise distribu-
tion. The characterization of the degree of this asymmetry
has become the focus of such theoretical considerations. To
make the model analytically tractable, an approximation of
the third-order cumulant is often applied together with a high-
barrier assumption [5–7]. If the latter corresponds to a typical
experimental set [8,9], the former places limitations on the
theoretical predictions, and the degree of the limitations is still
not well understood. Several theoretical approaches [4,11,12]
assume a high-friction limit resulting in overdamped model
dynamics, whereas weak damping (underdamped) dynamics
is experimentally observed [8,9].

A revision of the existing approaches explained earlier is
necessary in order to shed light on the non-Gaussian noise
induced escape problem. The aim of this research is therefore
to present a generic approach beyond the third-cumulant limit,
and to compare the theoretical predictions with the results of
numerical simulations. The revision in this work follows the
approaches adopted in previous studies [6,7] demonstrating
the presence of constraints on the noise characteristics when
theoretical predictions are compared with numerical and/or
experimental results. We also show that the absence of a
prefactor in the estimation of the escape rate may result in
a large error in theoretical predictions.

Theoretical considerations [5–7,10,12], as well as this
work, are motivated by the use of the escape rate for
characterization of shot noise in mesoscopic conductors.
However, the general theoretical setting is applicable for
a wider range of problems including vibrations in civil
structures [13], switching in microelectromechanical system
(MEMS) and nanoelectromechanical system (NEMS) [14,15],
neuronal dynamics [16], and ion channel permittivity [17,18].
It is important to mention that noise induced escape and the
corresponding mean first-passage time problem in the presence
of non-Gaussian noise (also known as white shot noise) have
not been discussed as comprehensively as white or colored
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Gaussian noise [19]. Nonetheless, the literature is extensive
and nearly all publications have dealt with one-dimensional
potential systems [20–24] for the overdamped case. In some
cases, additional limitations on noise characteristics [20,21,23]
allowed the problem to be solved analytically and made the
task analytically intractable for other cases [21].

The approach adapted in this work is based on the practical
realizations of a noise detector used for full counting statis-
tics [8,9]. This approach provides an experimental basis for
studying the escape problem in the presence of non-Gaussian
noise. The dynamic behavior of the detector is underdamped
and the acting noise is white (uncorrelated) with a finite second
cumulant; there are no explicit limitations on the shape of the
noise distribution. This experimental setting is quite broad,
involving wide-ranging research applications as mentioned
above, and thus extends beyond the detection of noise statistics.

The dynamic system, noise properties, as well as the
theoretical approach for the estimation of the escape rate for
non-Gaussian noise are presented in Sec. II. We compare
theoretical and numerical results in Sec. III and discuss
applicability of the third-cumulant limit in Sec. IV. The main
conclusions are summarized in Sec. V.

II. DYNAMIC SYSTEM AND THEORETICAL APPROACH

A simplified experimental scheme, presented in Fig. 1(a),
shows a noise source and a threshold detector, both biased
by current and based on the Josephson junction [8–10]. For
this system, the voltage drop in the noise source is larger
than thermal fluctuations. Tunneling events are a dominant
source of carriers, implying that the noise source is in a
pure shot-noise regime. An additional current bias [middle
of Fig. 1(a)] is used to remove a constant component I of
the shot noise ζ (t) indicating that zero-mean shot noise η(t) is
acting on the detector. In contrast, the detector is in the thermal
regime as the voltage drop of the detector is smaller than
thermal fluctuations. It is noted that the experiments [8–10] are
carried out in a low-temperature environment with a minimal
temperature of around 20 mK. For such low-temperature
values, the quantum effects in the detector should be strong as
predicted by the theory (for example, Ref. [25]). However,
previous experimental results [8–10,26,27] state that the
dynamics of the detector can also be described within the
classical limit. Another potentially important factor refers to
the presence of the feedback effect of the detector to the
noise source [28,29]. This factor can be neglected in our
consideration due to the feedback being considered small in
the reported experiments [7–10].

The Josephson junction as a noise source produces shot
noise with Poissonian statistics [1,30–32]. Poisson noise is
known as a rare event process with an asymmetric probability
distribution [33]. The presence of the asymmetry means that
depending on the sign of the currents I [left and middle
current sources in Fig. 1(a)], the right and left tails of the
noise probability distribution are of different widths [Fig. 1(b)].
This asymmetry is reflected in the difference (asymmetry) of
escape rates in the detector that has a multistable potential
[Fig. 1(c)]. Thus, the difference between the escape rates
characterizes the asymmetry of the noise distribution and,
consequently, the degree of non-Gaussianity. In order to extract
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FIG. 1. (Color online) (a) Sketch of experimental setup. Symbols
I and s denote biased currents. Direction of the currents is shown by
arrows. (b) Schematic of the asymmetry of noise distribution. Poisson
distributions (5), initial and flipped, with � = 4.5 and �t = 1 are
shown by solid (blue and green) curves, and Gaussian distribution
with a zero-mean value and a standard deviation equal to � was
used to draw dashed (red) curve. (c) The tilted U (x) = sin(x) − sx

and third-order U (x) = ax − bx3/3 potentials are shown by solid
(blue) and dashed (green) curves, respectively, with the following
parameters: s = 0.990 65, a = 0.009 310 1, b = 0.4965. The inset
shows the part of the potentials in the vicinities of their minimal
and maximal values (first extrema for the tilted potential) which are
undistinguished.

quantitative information on non-Gaussianity from the exper-
imental measurements, a theoretical description (in the form
of a mathematical expression in the simplest case) is required
that conjoins the escape rate with the asymmetry parameter(s).
So far, the third cumulant, as mentioned above, has been
considered as the main asymmetry parameter, although all
cumulants of higher than the second order contribute [34,35].
Note that the values of the first and second cumulants as well as
detector parameters can be defined by using well-established
measurement techniques [10,27], and therefore these values
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are considered as “known”. The validity of the theoretical
prediction is crucial for the entire experimental approach.

The dynamic system under consideration, which describes
the experimental setup [7,9,10], is as follows:

ẍ + αẋ + dU

dx
=

√
αDξ (t) ± η(t), (1)

η(t) = ζ (t) − I . (2)

Equation (1) is in a dimensionless form and all the parameters
are normalized. An equivalent non-normalized equation with
corresponding values of parameters can be found in published
papers [7,10]. Normalized coordinate x corresponds to the
current of the Josephson junction with biased potential U (x) =
sin(x) − sx and damping coefficient α. The bias s is selected
in such a way that a tilted multistable (washboard) potential
is formed in the system, and a noise induced escape from one
of the stable states via the lowest potential barrier [Fig. 1(c)]
is analyzed. In the case of a tilted form, the system (1), after
escape, evolves along the potential (so-called running mode)
and this motion can be easily detected in experiments [9,10].
Noise ξ (t) corresponds to the thermal noise in the detector. It is
Gaussian white noise with unit variance and zero-mean value:
〈ξ (t)〉 = 0, 〈ξ (t)ξ (0)〉 = δ(t); D defines noise intensity. Term
η(t) in (1) describes a shot noise of the source and consists
of two components (2): I is bias current applied to the source
and ζ (t) corresponds to the Poisson white noise which can be
represented as a sum of independent pulses [36]

ζ (t) =
N∑

i=1

zig(t − ti). (3)

In expression (3), zi are independent random amplitudes of
pulses, function g(t − ti) describes the pulse shape, ti are
independent random times of pulse appearance. Time intervals
τi = ti+1 − ti between two subsequent pulses have exponential
distribution

p(τi) = � exp(−�τi), (4)

where � is a parameter of the Poisson noise and defines the
frequency of the events. The number of pulses n within the
time interval �t follows a Poisson distribution

p(n) = (�t�)n exp(−�t�)

n!
. (5)

Following previous approaches [5–7,10], we consider δ im-
pulses of the same amplitude λ:

ζ (t) =
N∑

i=1

λδ(t − ti). (6)

The Poisson noise (6) is characterized by an infinite number
of nonzero cumulants defined as

χs(0,t1, . . . ts) = �λsδ(t1) . . . δ(ts), (7)

where χs represents an s-order cumulant. Since the first
cumulant is nonzero, the noise produces a bias λ� which
is removed by term I in (2) [the middle current source in
Fig. 1(a)], therefore, I = λ�. Thus, we consider a zero-mean
non-Gaussian noise η(t) acting together with a white noise ξ (t)

on the system (1). All cumulants of η(t) are equal to cumulants
χs except the first cumulant, which is equal to zero.

The task consists of the estimation of the difference between
two mean first-passage times (T+ and T−) corresponding
to the opposite signs in front of η(t) in (1). Both T+ and
T− are experimentally measured quantities which lead to an
asymmetry factor [7,10]

�T = T+
T−

− 1. (8)

The value of �T characterizes the asymmetry of the noise
distribution and the lower index T is used to stress that the
factor is derived from measurements of times T±. Due to
escape having an activation character, the times T± can be
expressed in the following form [19]:

T± = Z± exp

(
S±
θ

)
, (9)

where Z± and S± are the prefactor and action, respectively, and
θ is an effective intensity of both Gaussian and non-Gaussian
noise in (1). Further, it is implicitly assumed [5–7,10,12] that
prefactor Z± can be omitted leading to the asymmetry factor
in the form

�S = exp

(
S+ − S−

θ

)
− 1. (10)

The subscript S in (10) indicates that we need to measure
actions S± rather than times T±. Omission of the prefactors
Z± is equivalent to the assumption that Z+ = Z−. The validity
of this assumption was not verified and we discuss this matter
in the following. Thus, the actions S± are the subject of
theoretical approaches, whereas the times T± are measured
experimentally. This indicates that the actions rather than T±
must be extracted from experiments or numerical simulations
for the proper use of the theory. Note that this aspect has not
been addressed in published papers.

Although all previously suggested theoretical ap-
proaches [5–7,10,12] are very similar, there is no unified
framework to follow. Therefore, we suggest our version which
is based on the approaches described in publications [6,7]. This
will enable us to compare two approaches: the first approach
with only the third cumulant taken into account and the second
approach with all cumulants (7) considered. In this way, the
importance of higher-order cumulants will be investigated.

The starting point of the theoretical development is the
Fokker-Plank equation (FPE) corresponding to the Langevin
equation (1) [7] (see papers [36,37] for details of the derivation
of the term describing non-Gaussian noise):

∂P

∂t
= − ∂

∂x
(yP ) − ∂

∂y

[(
−αy − dU (x)

dx

)
P

]

+ 1

2
αD

∂2

∂y2
P + �

[
exp

(
∓λ

∂

∂y

)
− 1

]
P. (11)

In Eq. (11), a new variable y = ẋ is introduced and P ≡
P (x,y,t) is probability density. The exponent in the last
term in (11) describes Poisson noise and has the following
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Maclaurin series representation [38]:

exp

(
∓ λ

∂

∂y

)
=

∞∑
j=0

(∓λ)j ∂j

∂yj

j !
. (12)

Let us consider the solution of Eq. (11) in exponential form [7],
that is,

P ∝ exp

(
S

θ

)
, (13)

with action S and the effective noise intensity θ . Note that
an exponential form has been used in all recent theoretical
approaches [5–7,10,12]. However, particular forms of θ

are varied from one approach to another. Importantly, the
proportionality symbol is used in (13) because equality would
require an additional prefactor Z.

Effective noise intensity θ is an asymptotic parameter of the
problem. Assuming that higher cumulants of a non-Gaussian
noise are smaller than the second cumulant, θ can be chosen [7]
in the form θ = αD + λ2�, i.e., θ is proportional to the
second moment of the sum of the Gaussian and non-Gaussian
noises. Note that the second moment is a quantity measured
experimentally. The selection of θ and the form of (13) require
an additional verification, which is performed later.

Following the Wentzel-Kramers-Brillouin (WKB) approx-
imation [7,39], we substitute (13) into the FPE (11) and keep
the leading-order (1/θ ) terms only. The latter formally means
the use of the zero-noise limit as θ → 0. The final result can
be written as the following Hamiltonian system of equations:

ẋ = y,

ẏ = −αy − dU

dx
− αD

θ
py ± λ�

[
exp

(∓λpy

θ

)
− 1

]
,

ṗx = px

d2U

dx2
,

ṗy = −px + αpy.

(14)

In (14), px ≡ ∂S
∂x

and py ≡ ∂S
∂y

are conjugated moments. In
contrast to the Gaussian case [39], the asymptotic parameter θ

is not eliminated; all the parameters characterizing noise also
are present in the final system of Eqs. (14). The approach,
however, can be only applied formally for S 
 θ . In the
following, we return to this point.

System (14) has to be completed by two boundary condi-
tions corresponding to a transition from the minimum of the
potential (x = xmin, y = 0) to its maximum (x = xmax, y = 0)
[inset in Fig. 1(c)]. These boundary conditions [39] specify
a heteroclinic (connecting two saddle states) trajectory of
system (14) and these are the following:

for ti → −∞ : x = xmin, y = 0, px = 0, py = 0,
(15)

for tf → ∞ : x = xmax, y = 0, px = 0, py = 0,

where ti and tf are the initial and final time moments. If the
solution of the boundary problem exists [39], it can be used
to calculate the action difference Smax − Smin corresponding
to the minimal energy required for the system to migrate from
the bottom xmin to the top potential xmax. We assume that
Smin = 0 and therefore S = Smax. Denoting coordinates of a

heteroclinic trajectory as (x̃,ỹ,p̃x,p̃y), the action is determined
by the expression

S± =
∫ tf

ti

dt

{
−αD

2θ
p̃2

y + θ�

[
exp

(∓λp̃y

θ

)
− 1 ± λ

θ
p̃y

]

± p̃yλ�

[
exp

(∓λp̃y

θ

)
− 1

]}
, (16)

where ti and tf are initial and final time moments, respectively;
signs of S± correspond to the signs of noise η(t) (2). Action
S± corresponds to the potential U (x) of the system if it is
affected by Gaussian noise only, whereas action is different in
the presence of non-Gaussian noise. The WKB approximation
and action S are being extensively applied for the analysis
of fluctuations in nonequilibrium systems [40–42], whereas
action S specified a quasipotential and has the same meaning as
potential in an equilibrium case. The latter means that the mean
first-passage times T± can be presented in the exponential form

T± ∝ exp

(
S±
θ

)
, (17)

where S± is defined by (16) with boundary conditions (15).
The theoretical approach presented above takes into account

all cumulants of non-Gaussian noise. The third-cumulant
approximation can be obtained from Eqs. (14) by expanding
the exponential function into a series (12) and truncating all
terms above p3

y . The resulting Hamiltonian system is

ẋ = y,

ẏ = −αy − dU

dx
− αD

θ
py + λ2�

θ

(
−py ± λ

2θ
p2

y

)
,

ṗx = px

d2U

dx2
,

ṗy = −px + αpy,

(18)

and the corresponding action is defined as

S3
± =

∫ tf

ti

dt

{
−αD

2θ
p̃2

y − λ2�

2θ
p̃2

y ± λ3�

3θ2
p̃3

y

}
, (19)

where index “3” in (19) is used to indicate the third-order-
cumulant approximation. Thus, systems (14) and (18) with
boundary conditions (15) and corresponding actions (16)
and (19) describe effects of the presence of non-Gaussian
noise. We solve the boundary value problem using custom
software [43], following the approach described in paper [44].

III. NUMERICAL SIMULATIONS VERSUS THEORY

Numerical simulations of the Langevin equation (1) are
extremely computationally demanding because the escape
time T± should be lower than a characteristic relaxation time
of the system (1) by a factor 106 for mimicking the exper-
iments [10]. Therefore, for accelerating the simulations, we
replace the periodic potential U (x) = sin(x) − sx in (1) by the
third-order polynomial U (x) = ax − bx3/3 with parameters
a and b to approximate one well of the periodic potential
[see Fig. 1(c)]. Note that the relative difference between the
theoretically calculated actions S± for these polynomial and
periodic potentials is less than 0.01%.
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Numerical simulations were performed using a Heun differ-
ence scheme, details of which can be found in publication [45].
The Poisson noise term was constant in each integration
step and was calculated [10] as λ pn(�t�), where λ and
� are the amplitude and frequency of the Poisson noise,
respectively; �t is the integration step size and the value of
pn is produced by a pseudorandom numbers generator with
a Poisson distribution (5). The applied scheme was verified
against known theoretical results [35] for linear systems
perturbed by non-Gaussian noise.

First, we checked the scaling (9) alongside the selection
of the effective noise intensity as θ = αD + λ2�. As it
was mentioned above, our theoretical approach contains a
self-contradiction: the asymptotic character of the WKB
approximation aims to remove the explicit value of θ ,
but θ appears explicitly in the final expression. The same
contradiction exists in previous theoretical developments
[5–7,10,12] too because θ includes both Gaussian D and non-
Gaussian λ2� parts and this puts constraints on the way the
parameter θ can be varied in numerical simulations to evaluate
scaling (9). As such, the following factors have to be kept
unchanged:

αD

θ
= C1, λ� = C2,

λ

θ
= C3, θ� = C4, (20)

where C1, C2, C3, and C4 are constants, whereas the value
of θ is varied. Importantly, these constraints keep the bias
I = λ� constant. The bias I characterizes the asymmetry of
the Poisson noise and it is the parameter of consideration [7].
The first condition in (20) means that relative contributions
of Gaussian and non-Gaussian noises are constant. Note that
this is equivalent to keeping the ratio λ2�

θ
constant; this ratio

characterizes the relative contribution of Poisson noise. In
order to calculate constants using (20), the values of bias
I = λ�, ratio αD/θ (or ratio λ2�

θ
), and λ should be specified.

Knowing the constants, we can vary θ in order to change the
values of D, λ, and � as follows:

αD = C1θ, λ = C3θ, � = C4

θ
. (21)

It is evident that experimental implementation of the procedure
described above is a nontrivial task; this is, however, the only
means to verify theoretical actions (16) and (19). In the absence
of Poisson noise, these actions are equal to the potential barrier
�U :

�U = U (xmax) − U (xmin) = 4

3

√
a3

b
(22)

with xmax = √
a/b and xmin = −√

a/b corresponding to the
maximum and minimum of U (x) = ax − bx3/3, respectively.
For the selected values a = 0.009 310 1, b = 0.4965, the
potential barrier is �U = 0.0017.

Let us consider an underdamped regime (weak damp-
ing) of system (1) by fixing the damping coefficient to
α = 0.5; also, set ratio λ2�

θ
= 0.3 and bias I = 0.015.

These values correspond to experimental conditions typically
reported [8–10]. Following the approach described above,
we varied θ and calculated the mean escape times T± for the
two different signs of the noise η(t). More than 20 000 escape
events were used for the estimation of the values of T±. Escape
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1/θ

T
±

(a)

1 2 3 5 6 7 8
ΔU/θ

0 500 1000 1500
10

1

10
2

1/θ

T
± (b)

1 2ΔU/θ

FIG. 2. (Color online) (a) Mean escape times T± as functions of
1/θ . Markers “�” and “◦” correspond to negative and positive signs
of the term η(t) in (1), respectively. The calculations were performed
for λ2�

θ
= 0.3 and I = 0.015. Solid lines correspond to linear fitting

using (23). The scale of ordinate is logarithmic. (b) A zoomed part
of figure (a). Upper abscissa in both figures shows values of the ratio
�U/θ .

times T±, as functions of 1/θ , are shown in Fig. 2. Exponential
scaling (9) is clearly observed and supports the validity of
the selected form (13) and the use of θ = αD + λ2� as an
effective noise intensity. Significantly, the exponential scaling
is observed in a wide range of 1/θ up to the value of θ close to
the magnitude of the potential barrier �U , and therefore action
S [see upper axis in Fig. 2(b)]. This result means that despite
the asymptotic character θ � S of the WKB approximation
used, it is also applicable for θ � S. This relaxes the condition
constraining the use of a high barrier in experiments [10]. The
range of experimental parameters for which the theoretical
description is valid can therefore be significantly extended.
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FIG. 3. (Color online) Normalized actions S±/�U are shown as
functions of the ratio λ2�

θ
. Markers “�” and “◦” correspond to results

of numerical simulations for the negative and positive signs of η(t),
respectively. Solid lines correspond to theoretical predictions. The
value of θ = 0.000 42 was used in theoretical estimations of the
actions S± by (16). Other parameters are specified in the text. Upper
abscissa shows value of the current I .

The least-squares fitting (solid lines in Fig. 2) of the
numerical results by a linear function

ln(T±) = S±
1

θ
+ ln(Z±) (23)

allows us to extract both the values of actions S± and prefactors
Z± in (9) for conducting a comparison between the theory and
numerical simulations.

Now let us vary αD from zero to θ , that is, between the two
extreme cases of pure Gaussian noise and pure Poisson noise.
Mimicking experimental conditions, we fix the amplitude λ =
0.0084 and vary frequency �. This results in varying the ratio
λ2�
θ

between 0 to 1. Note that the bias I also changes. A
comparison of numerical (markers) and theoretical (solid lines)
normalized actions S±/�U is presented in Fig. 3. The results
of the numerical simulations and the theoretical predictions
are in close agreement thus proving the applicability of the
theoretical approach presented here for the analysis of the
non-Gaussian features of the noise. It is seen (Fig. 3) that
the difference between S− and S+ increases with the increase
of the relative contribution of Poisson noise which, in turn,
corresponds to increased asymmetry of noise distribution. The
actual difference between the two values of S− and S+ provides
a qualitative description of the asymmetry.

To reiterate, experimentally a non-Gaussian feature of noise
is characterized by the asymmetry factor �T given by (8),
whereas the theoretical approach estimates the factor �S

via (10). Numerical simulations allow us to estimate both
factors �T and �S by calculating the dependencies T±(θ ) and
using the fitting expression (23) to extract the actions S±. We
denote numerically obtained factors (8) and (10) by an upper
index n, that is, �n

T and �n
S , respectively, and compare these

factors with the theoretical �S for different values of the ratio
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λ2Λ/θ

Γ
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I

FIG. 4. (Color online) Asymmetry factor � as function of ratio
λ2�

θ
. The solid curve corresponds to the theoretical factor �S , markers

“+” and “×” correspond to �n
S and �n

T , respectively. Parameters are
selected as for Fig. 3. Upper abscissa shows value of the current I .

λ2�/θ . As can be seen in Fig. 4, the theoretical factor �S is
close to �n

S . This reflects once again the validity of the use of
scaling (9) as well as the applicability of the theory developed.
The theoretical factor �S is also close to �n

T for small values of
the ratio λ2�/θ , when the asymmetry of the noise distribution
is small. However, with this ratio approaching 1, there is a
growing difference between �T and �S . The presence of such
a difference means that neglecting prefactor Z in (10) can
lead to an error when approximation (10) is used instead
of factor (8) arising from experimental measurements. The
maximum of the ratio λ2�/θ was reported to be around 0.6
from experiments [8–10] and is within the range of negligible
difference between �T and �S . As a result, the use of �S

in a theoretical consideration instead of the experimentally
measured �T can not be a cause for a poor correspondence
between theory and experiments [7,10]. However, the ratio
λ2�/θ can be larger in experiments [26], and in this case the
theory will produce an error in the estimation of the asymmetry
factor �T .

IV. COMPARISON OF THE THIRD-ORDER-CUMULANT
AND ALL-CUMULANTS APPROACHES

Previous theoretical developments [5–7,10,12] aimed to
derive an analytical expression with the third-order-cumulant
approximation. In this section, the importance of keeping all
cumulants is considered via a comparison of two actions S±
and S3

± calculated according to (16) and (19), respectively,
with the numerically obtained action via scaling (9). For
maximizing the effects of non-Gaussianity of noise, the pure
Poisson noise has been investigated, i.e., when D = 0. The
bias I = λ� is selected as a varying parameter characterizing
the asymmetry of the noise distribution. Non-Gaussian effects
are maximized in the I → 0 limit; another limit as I → ∞
corresponds to the Gaussian case. The dependencies of the
theoretical and numerical actions as functions of the inverse
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FIG. 5. (Color online) Normalized actions S±/�U as functions
of inverse current 1/I . Markers “�” and “◦” correspond to the results
of numerical simulations for negative and positive signs of η(t),
respectively. Dashed and solid curves correspond to actions S± (16)
and S3

± (19). Parameters are specified in the text. Figures (a) and (b)
show dependencies S±(1/I ) for different ranges of 1/I .

current 1/I are shown in Fig. 5. Several remarkable features
can be seen.

First, the third-cumulant approach provides the solution for
the limited range of the inverse current 1/I < 32 only. Outside
this range, the solution of the boundary value problem (15)
does not exist for negative η(t), whereas this is not the case
for the positive sign. For large values of bias I (I > 0.2 or for
the inverse 1/I < 5), the difference between the all-cumulants
and third-cumulant approaches [Fig. 5(b)] is small, however
the difference increases with the decrease of the bias I (greater
1/I ). Note that in the experiments [10], the current is relatively
large and, consequently, the third-cumulant approach provides
high-accuracy predictions.

Second, for the all-cumulants approach, there is a very good
correspondence between theoretical and numerical results for
a wide range of 1/I . For 1/I > 90 [Fig. 5(a)] the exponential
scaling (17) is not observed in numerical dependencies T (θ )
for the negative sign of η(t).

Third, the theory predicts a bell shape of the dependence
S−(1/I ) [red dashed line in Fig. 5(a)] with a clear maximum.
This feature was not confirmed by numerical simulations for
the selected parameters, but it was observed for a different set
of parameters. Further discussion of this feature is out of the
scope of this paper.
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FIG. 6. (Color online) Asymmetry factors � as functions of
inverse current 1/I . Solid and dashed curves correspond to theoretical
factors �3

S and �S , respectively. Markers “+” and “×” correspond to
�n

S and �n
T , respectively.

Finally, numerical and theoretical asymmetrical factors
� calculated as functions of the inverse bias 1/I (Fig. 6)
have been compared. There is an excellent correspondence
between the numerical factor �n

S and the theoretical factor
�S which was obtained by the all-cumulants approach. The
third-order-cumulant approximation �3

S has a limited range
of 1/I where the theoretical prediction is close to numerical
results. The difference between the factors �S and �T is
observed in a wide range of the inverse bias 1/I and, moreover,
the difference reaches a value of one order of magnitude. The
latter demonstrates a significant contribution of the prefactors
Z± in the estimation of the asymmetry factor �T for the case
of strong asymmetry of noise distribution.

V. CONCLUSIONS AND DISCUSSION

We presented a theoretical background for calculating the
action (an exponential factor of the mean escape time) for an
underdamped oscillator driven by a mixture of white Gaussian
and Poisson noises. Note that this approach can be extended
to systems of any dimension and to any non-Gaussian noise
with finite cumulants. The validity of the theoretical approach
suggested here has been confirmed by numerical simulations.
We showed that this approach is able to provide a qualitative
prediction for actions S± for a wide range of parameters.

Theoretical considerations as presented here and published
elsewhere [4–7,10] include the asymptotic parameter θ ex-
plicitly in the final expressions. This places constraints (20)
on the range of the parameters in experiments or numerical
simulations within which they can be varied in order to be
consistent with the theoretical approach. This implies that the
dependence of the mean first-passage time T on noise intensity
is not exponential (17) for the case where intensity of only one
noisy component in a mixture of two components (Gaussian
and non-Gaussian) is varied. Note that the exponential scaling
of escape rate as a function of intensity of the Poissonian
component [Gaussian component (temperature) was constant]
was used for a comparison between the theory and experi-
ments [9,10]. According to our results (Fig. 3), varying the
intensity of just one component changes the ratio between the
components and it changes action S, which is represented by
an exponential factor in T . Since this change of S is relatively
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small, the deviation of T from exponential scaling is weak but
still present in experiments [9,10]. It is noticeable that there is
a difference between experimental and theoretical results [for
example, compare dashed and solid lines in Fig. 2(b) in Le
Masne et al. [9]]; this difference can be explained by the action
being dependent on the intensity ratios between Gaussian and
Poissonian components of noise.

It was stated in the Introduction that there are discrepancies
between the published theoretical predictions and experiments.
As a possible explanation [7] of the discrepancies, the use
of a third-order-cumulant approximation and omission of
a prefactor in the escape rate have been mentioned. Our
comparative study shows that these are not relevant for the
range of parameters in experiments. The discrepancy can be
explained by the additional approximations made in Eq. (19)
necessary for deriving an analytical expression for the action
S. In contrast, we solved the equation numerically, and showed
excellent correspondence between the theoretical approach
and numerical simulations, thus confirming the validity of the
general theoretical framework.

We showed that the third-order-cumulant approach is
applicable for a limited region of parameters, within which the
non-Gaussian effects are relatively weak. The all-cumulants
approach does not have such limitations and demonstrates

an excellent correspondence with the results of numerical
simulations. We further demonstrated that both the current
and all previous theoretical approaches [5–7,10,12] are not
capable of providing a quantitative description of noise with
a strong asymmetry since these do not take the prefactor
Z± into account in the expression for the mean escape
rate (9) and subsequently in (8) for the asymmetry factor �T .
These approaches can only provide a qualitative prediction.
Furthermore, since the theory is able to accurately predict
the actions S±, experiments need to be designed so as to
extract the actions rather than the mean escape time. Such
experiments would then lead to new challenges as these will
require simultaneous tuning of several parameters in order to
satisfy four conditions (20).
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