60 research outputs found

    Ann-based model for the prediction of the bond strength between frp and concrete

    Get PDF
    In the last decades, the uses of fiber reinforced polymer (FRP) composites in the structural strengthening of reinforced concrete (RC) structures have become the state of the art, providing a valid alternative to the traditional use of steel plates. These relatively new materials present, in fact, great advantages, including high corrosion resistance in aggressive environments, low specific weight, high strength-to-mass-density ratio, magnetic and electric neutrality, low axial coefficient of thermal expansion and sustainable costs of installation. In flexural and shear strengthening of RC members, the effectiveness of the epoxy bonded FRP strongly depends on the adhesion forces exchanged with the concrete substrate. When the flexural moment is present, the FRP strengthening is activated through the stress transfer on the tension side, which is guaranteed by the contact beam region to which the adhesive is bonded to the beam itself. Hence, the determination of the maximum forces that cause debonding of the FRP-plate becomes crucial for a proper design. Over the years, many different analytical models have been provided in the scientific literature. Most of them are based on the calibration of the narrow experimental database. Now, hundreds of experimental results are available. The main goal of the current study is to present and discuss an alternative theoretical formulation for predicting the debonding force in an FRP-plate, epoxy-bonded to the concrete substrate by using an artificial neural networks (ANNs) approach. For this purpose, an extensive study of the state of the art, reporting the results of single lap shear tests, is also reported and discussed. The robustness of the proposed analytical model was validated by performing a parametric analysis and a comparison with other existing models and international design codes, as shown herein

    Seismic capacity estimation of a masonry bell-tower with verticality imperfection detected by a drone-assisted survey

    Get PDF
    Masonry towers are considered an important part of cultural heritage due to their architectural and historical value. From a structural perspective these kind of buildings are considered slender elements, the same as a cantilever beam. In real cases it is not easy to model with high accuracy these heritage constructions, since the geometry and mechanical properties of the constituent materials are not adequately known. On the other hand, a deep knowledge of the structural and seismic vulnerability of the masonry towers is needed in order to preserve and retrofit, when necessary, their architectural and cultural value. In the present research an exhaustive study is presented, as it regards the assessment of the seismic vulnerability of a heritage masonry bell-tower, built in the 14th century. An innovative protocol of structural survey followed, and it is proposed herein. The geometry of the tower was easily obtained by digital photogrammetry assisted by a drone. The geometrical model was easily converted into a digitalized input, that was introduced into a finite element method (FEM)-based code. The 3D model was used for linear static, linear dynamic and nonlinear static (pushover) structural analyses. The vulnerability of the masonry tower was assessed and at least one kinematic was found to be not verified

    Energy and seismic drawbacks of masonry: a unified retrofitting solution

    Get PDF
    All over the world, a large part of existing buildings is not adequate to satisfy the safety requirement and the thermal comfort criteria. For this reason, the interest in structural and energy retroftting systems has steadily grown in the last decades. In this scenario, an innovative thermal resistant geopolymer mortar has been developed and used for Inorganic Matrix Composite (IMC) systems aimed to a combined seismic and energy new retroftting technique. The geopolymer-based IMC is able to ensure competitive mechanical properties with respect to the traditional lime-based IMCs and, at the same time, a signifcant reduction in thermal conductivity. In this paper, an experimental program is reported considering small-scaled masonry panels with double-side IMC-retroftting and determining both the in-plane shear strength and the thermal resistance. The experimental shear tests are aimed to compare the mechanical performance of the geopolymer innovative systems with those of the traditional lime-based ones. Moreover, the thermal resistance gain of the innovative solutions was measured and compared with traditional systems. The results evidenced the efectiveness of the proposed technique that signifcantly improved the performances of masonry walls from both the thermal and the mechanical point of view

    Metástase ocular de tumor venéreo transmissível em cão. Relato de um caso

    Get PDF
    O artigo nĂŁo apresenta resumo

    Is the Non-Coding RNA miR-195 a Biodynamic Marker in the Pathogenesis of Head and Neck Squamous Cell Carcinoma? A Prognostic Meta-Analysis

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of neoplasms whose histological derivation comes from the mucous membranes lining the epithelium: the oral cavity, the larynx, the hypopharynx, the nasopharynx, and the oropharynx. The etiopathogenetic mechanisms involving tumor genesis including the alteration of cell proliferation, apoptosis, invasion, migration, and death may involve alterations in the expression of microRNA (miR). To date there have been no systematic reviews with meta-analysis conducted specifically on the role of miR-195 in HNSCC; therefore, our hypothesis was to evaluate if the aberrant expression of miR-195 in HNSCC tissues may represent a prognostic biomarker of survival through the hazard ratio (HR) and relative risk (RR) analysis. The systematic review was designed according to the PRISMA indications; in total, three electronic databases were consulted (PubMed, Scopus, Cochrane Central Trial) including Google Scholar and the gray literature, and a combination of keywords was used such as miR-195 AND HNSCC, microRNA AND HNSCC and miR-195. The meta-analysis and trial sequential analysis were performed using RevMan 5.41 software and TSA software (Cochrane Collaboration, Copenhagen, Denmark). This search identified 1592 articles and, at the end of the selection process, three articles were included. The results of the meta-analysis reported an aggregated risk ratio for overall survival (OS) between the expression of miR-195 at the highest and lowest of 0.36 and 6, respectively, 95% CI: [0.25, 0.51]. Heterogeneity was evaluated through Chi2 = 0.05 df = 2 (p = 0.98) and the Higgins index I2 = 0%. The test for the overall effect was Z = 5.77 (p < 0.00001). The forest plot was in favor of higher OS in patients with high miR-195 expression

    Psychiatric diagnoses, trauma, and suicidiality

    Get PDF
    BACKGROUND: This study aimed to examine the associations between psychiatric diagnoses, trauma and suicidiality in psychiatric patients at intake. METHODS: During two months, all consecutive patients (n = 139) in a psychiatric hospital in Western Norway were interviewed (response rate 72%). RESULTS: Ninety-one percent had been exposed to at least one trauma; 69 percent had been repeatedly exposed to trauma for longer periods of time. Only 7% acquired a PTSD diagnosis. The comorbidity of PTSD and other psychiatric diagnoses were 78%. A number of diagnoses were associated with specific traumas. Sixty-seven percent of the patients reported suicidal thoughts in the month prior to intake; thirty-one percent had attempted suicide in the preceding week. Suicidal ideation, self-harming behaviour, and suicide attempts were associated with specific traumas. CONCLUSION: Traumatised patients appear to be under- or misdiagnosed which could have an impact on the efficiency of treatment

    Substance abuse and intimate partner violence: treatment considerations

    Get PDF
    Given the increased use of marital- and family-based treatments as part of treatment for alcoholism and other drug disorders, providers are increasingly faced with the challenge of addressing intimate partner violence among their patients and their intimate partners. Yet, effective options for clinicians who confront this issue are extremely limited. While the typical response of providers is to refer these cases to some form of batterers' treatment, three fundamental concerns make this strategy problematic: (1) most of the agencies that provide batterers' treatment only accept individuals who are legally mandated to complete their programs; (2) among programs that do accept nonmandated patients, most substance-abusing patients do not accept such referrals or drop out early in the treatment process; and (3) available evidence suggests these programs may not be effective in reducing intimate partner violence. Given these very significant concerns with the current referral approach, coupled with the high incidence of IPV among individuals entering substance abuse treatment, providers need to develop strategies for addressing IPV that can be incorporated and integrated into their base intervention packages

    A removable use of FRP for the confinement of heritage masonry columns

    No full text
    For masonry structures in historical heritage with architecturally valuable features, such as frescoed surfaces, the application of structural reinforcement techniques appears to be very complex due to the requirements of removability and limited invasiveness. This is valid with reference to both traditional techniques and modern techniques, such as the external reinforcement with fibre-reinforced composite materials. In this scenario, the use of fibers reinforced polymers (FRPs) is drastically forbidden due to the use of epoxy-based matrix, which does not allow the removal of the intervention without damage of the substrate, even if the mechanical effectiveness of this system has been largely tested and proved. In fact, the reversibility is one of the most relevant aspects in the field of Heritage engineering. Thus, manyefforts need to be spent in order to meet possible solutions, able to mitigate the risk, especially against seismic forces and other natural risks, while ensuring the conservation of the built heritage. This experimental research, which follows a first study on a smaller scale, aims to answer the question: how could a masonry column with frescoes and valuable surfaces be strengthened or repaired in a completely reversible manner?. Two strengthening methods were studied and are proposed herein by assuring the removability of the FRP-confinement of masonry columns. The first technique consists of a liquid adhesion inhibitor applied by brush before the hand lay-up installation of the FRP. The second is set by the interposition of a MylarTM layer between the substrate and the FRP jacket. Uniaxial compression tests were performed in order to demonstrate the efficacy of the new strengthening techniques in increasing the axial strength (+39% and +27% on average for the tuffand limestone-based masonry, respectively) and displacement capacity (+32% and +171% on average for the tuff- and limestone-based masonry, respectively) with respect to un-confined columns. Masonry columns FRP-confined with traditional wet lay-up were also tested for direct comparison. At a later moment, the FRP-jacket was removed to observe the substrate, which has been found effectively preserved from the adhesive, without any discoloration. The experimental results are extensively shown and discussed in the paper

    Seismic behavior of a masonry bell-tower with verticality defect

    No full text
    The seismic behaviour of slender structures, such as masonry towers, is dominated by bending which may lead to overturning. Since the geometrical survey of towers is hard to compute due to the prevalent longitudinal development of the structure, the shape inputted in the FEM-habitat (Finite Element Method) is commonly regularised (e.g. in cross-section, openings, global shape, etc.). This assumption may make the computation significantly more time-saving together with the increase of the model robustness. At the same time, it may compromise the accuracy of the theoretical prediction. The present study is aimed to report and discuss a seismic vulnerability analysis of a Heritage masonry bell-tower, dated back to the 14th century, placed in the south-east of Italy. The geometry of the structure was assessed by using a drone flying around the building and taking a series of photo afterwards computer-elaborated. The orientation of the photos, associated with the relative position of the drone in the 3D-space, allowed to assess a cloud of points belonging to the bell-tower, leading to an accurate geometrical survey. This process evidenced a verticality defect of the structure. After different investigations aimed to assess the mechanical properties of the masonry and the structural details, a FEM-analysis was achieved in order to compute the capacity under horizontal forces. Linear (modal) and non-linear (push-over) analyses were performed. Moreover, a nonlinear kinematic analysis was able to individuate the weakest rigid-body mechanism. The main results are presented and discussed in the paper, by evidencing that the lack of verticality produces an unsatisfactory seismic vulnerability index. In fact, the first failure mode consisted in the diagonal cracking at the middle height of the tower and the consequent overturning of the top-body, under the seismic acceleration at ultimate limit state (according to the Italian Technical Code)
    • …
    corecore