3 research outputs found

    Longer intervals between SARS-CoV-2 infection and mRNA-1273 doses improve the neutralization of different variants of concern

    Get PDF
    The humoral immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern elicited by vaccination was evaluated in COVID-19 recovered individuals (Rec) separated 1-3 months (Rec2m) or 4-12 months (Rec9m) postinfection and compared to the response in naïve participants. Antibody-mediated immune responses were assessed in 66 participants by three commercial immunoassays and a SARS-CoV-2 lentiviral-based pseudovirus neutralization assay. Immunoglobulin (Ig) levels against SARS-CoV-2 spike were lower in naïve participants after two doses than in Rec after a single dose (p < 0.05). After two doses in Rec, levels of total Ig to receptor-binding domain were significantly increased in Rec9m compared to Rec2m (p < 0.001). The neutralizing potency observed in Rec9m was consistently higher than in Rec2m against variants of concern (VOCs) Alpha, Beta, Delta, and BA.1 sublineage of Omicron with 2.2-2.8-fold increases. Increasing the interval between SARS-CoV-2 infection and the vaccination with messenger RNA-based vaccines to more than 3 months generates a more efficient heterologous humoral immune response against VOCs by allowing enough time to mount a strong recall memory B cell response.This work is funded by Instituto de Salud Carlos III, a Spanish public body assigned to the Ministry of Science and Innovation that manages and promotes public clinical research related to Public Health, by Grants PI19CIII/00004 (José Alcamí and Francisco Díez‐Fuertes) and PI21CIII/00025 (Javier García‐Pérez and Mayte Pérez‐Olmeda), COVID‐19 Fund (Grants COV20/00679 (Javier García‐Pérez, Mayte Pérez‐Olmeda, José Alcamí, and Francisco Díez‐Fuertes) and COV20/00072 (Javier García‐Pérez, Mayte Pérez‐Olmeda, Almudena Ramírez‐García, María Castillo de la Osa, Rocio Layunta Acero, Laura Vicente‐Izquierdo, Cristina Avendaño‐Solá, and José Alcamí), and CIBERINFEC, co‐financed by the European Regional Development Fund (FEDER) “A way to make Europe.”S

    Changes in the immune response against SARS-CoV-2 in individuals with severe COVID-19 treated with high dose of vitamin D

    Get PDF
    Main cause of severe illness and death in COVID-19 patients appears to be an excessive but ineffectual inflammatory immune response that may cause severe acute respiratory distress syndrome (ARDS). Vitamin D may favour an anti-inflammatory environment and improve cytotoxic response against some infectious diseases. A multicenter, single-blind, prospective, randomized clinical trial was approved in patients with COVID-19 pneumonia and levels of 25-hydroxyvitamin D (25(OH)D) of 14.8 ng/ml (SD: 6.18) to test antiviral efficacy, tolerance and safety of 10,000 IU/day of cholecalciferol (vitamin D3) for 14 days, in comparison with 2000 IU/day. After supplementation, mean serum 25(OH)D levels increased to 19 ng/ml on average in 2000 IU/day versus 29 ng/ml in 10,000 IU/day group (p < 0.0001). Although levels of inflammatory cytokines were not modified by treatment with 10,000 IU/day, there was an increase of anti-inflammatory cytokine IL-10 and higher levels of CD4+ T cells, with predominance of T central memory subpopulation. Cytotoxic response against pseudotyped SARS-CoV-2 infected cells was increased more than 4-fold in patients who received 10,000 IU/day. Moreover, levels of IFNγ were significantly higher in this group. Beneficial effect of supplementation with 10,000 IU/day was also observed in participants who developed ARDS and stayed at the hospital for 8.0 days, whereas those who received 2000 IU/day stayed for 29.2 days (p = 0.0381). Administration of high doses of vitamin D3 as adjuvant of the standard care treatment during hospitalization for COVID-19 may improve the inflammatory environment and cytotoxic response against pseudotyped SARS-CoV-2 infected cells, shortening the hospital stay and, possibly, improving the prognosis.We greatly appreciate all the patients for their participation in this study. We thank the excellent secretarial assistance of Mrs Olga Palao at the Centro Nacional de Microbiología (CNM, Instituto de Salud Carlos III). The authors also acknowledge María C. de la Cruz at Unidad Central de Apoyo a la Investigación Clínica y Ensayos Clínicos (Instituto de Investigación Sanitaria Gregorio Marañon; IiSGM) for her advice and assistance related to the clinical research with medicines. This work was supported by the Coordinated Research Activities at CNM (Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation) that is coordinated by Dr Inmaculada Casas (WHO National Influenza Center of the CNM); the Spanish Ministry of Science and Innovation (PID2019–110275RB-I00); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016–2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF) and Fundación Universidad Alfonso X el Sabio (FUAX, Madrid, Spain; Reference 1012010). The work of Montserrat Torres is financed by the Coordinated Research Activities at the CNM (Instituto de Salud Carlos III) (COV20_00679). The work of María Rosa López-Huertas and Sara Rodríguez-Mora is financed by NIH grant R01AI143567. The work of Lorena Vigón is supported by a pre-doctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER). The work of Fernando Ramos Martín is financed by the Spanish Ministry of Science and Innovation (PID2019–110275RB-I00). Drug Cholecalciferol (vitamin D) used in the study was donated by Italfarmaco Group (Cholecalciferol 25,000IU/2,5 ml oral solution). Italfarmaco Group had no role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, or the preparation, review, or approval of the manuscript.S

    Cellular and humoral functional responses after BNT162b2 mRNA vaccination differ longitudinally between naive and subjects recovered from COVID-19

    Get PDF
    We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.C.d.F., J.G.-P., and J.A. are supported by Instituto de Salud Carlos III (ISCII). We thank JM Ligos and Cytek Biosciences for their technical support. Research in E.L.-C.’s lab was supported by Fundación Familia Alonso, Santander Bank, Real Seguros, Fundación Mutua Madrileña, Fundación Uria, Fundación La Caixa, and Ayuntamiento de Madrid.S
    corecore