6 research outputs found
Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance
Left Ventricular (LV) Non-compaction (LVNC), Hypertrophic Cardiomyopathy (HCM), and Dilated Cardiomyopathy (DCM) share morphological and functional traits that increase the diagnosis complexity. Additional clinical information, besides imaging data such as cardiovascular magnetic resonance (CMR), is usually required to reach a definitive diagnosis, including electrocardiography (ECG), family history, and genetics. Alternatively, indices of hypertrabeculation have been introduced, but they require tedious and time-consuming delineations of the trabeculae on the CMR images. In this paper, we propose a radiomics approach to automatically encode differences in the underlying shape, gray-scale and textural information in the myocardium and its trabeculae, which may enhance the capacity to differentiate between these overlapping conditions. A total of 118 subjects, including 35 patients with LVNC, 25 with HCM, 37 with DCM, as well as 21 healthy volunteers (NOR), underwent CMR imaging. A comprehensive radiomics characterization was applied to LV short-axis images to quantify shape, first-order, co-occurrence matrix, run-length matrix, and local binary patterns. Conventional CMR indices (LV volumes, mass, wall thickness, LV ejection fraction-LVEF-), as well as hypertrabeculation indices by Petersen and Jacquier, were also analyzed. State-of-the-art Machine Learning (ML) models (one-vs.-rest Support Vector Machine-SVM-, Logistic Regression-LR-, and Random Forest Classifier-RF-) were used for one-vs.-rest classification tasks. The use of radiomics models for the automated diagnosis of LVNC, HCM, and DCM resulted in excellent one-vs.-rest ROC-AUC values of 0.95 while generating these results without the need for the delineation of the trabeculae. First-order and texture features resulted to be among the most discriminative features in the obtained radiomics signatures, indicating their added value for quantifying relevant tissue patterns in cardiomyopathy differential diagnosis
Biomarkers Predict In-Hospital Major Adverse Cardiac Events in COVID-19 Patients: A Multicenter International Study
COVID-19; Biomarkers; CreatinineCOVID-19; Biomarcadores; CreatininaCOVID-19; Biomarcadors; CreatininaBackground: The COVID-19 pandemic carries a high burden of morbidity and mortality worldwide. We aimed to identify possible predictors of in-hospital major cardiovascular (CV) events in COVID-19. Methods: We retrospectively included patients hospitalized for COVID-19 from 10 centers. Clinical, biochemical, electrocardiographic, and imaging data at admission and medications were collected. Primary endpoint was a composite of in-hospital CV death, acute heart failure (AHF), acute myocarditis, arrhythmias, acute coronary syndromes (ACS), cardiocirculatory arrest, and pulmonary embolism (PE). Results: Of the 748 patients included, 141(19%) reached the set endpoint: 49 (7%) CV death, 15 (2%) acute myocarditis, 32 (4%) sustained-supraventricular or ventricular arrhythmias, 14 (2%) cardiocirculatory arrest, 8 (1%) ACS, 41 (5%) AHF, and 39 (5%) PE. Patients with CV events had higher age, body temperature, creatinine, high-sensitivity troponin, white blood cells, and platelet counts at admission and were more likely to have systemic hypertension, renal failure (creatinine ≥ 1.25 mg/dL), chronic obstructive pulmonary disease, atrial fibrillation, and cardiomyopathy. On univariate and multivariate analysis, troponin and renal failure were associated with the composite endpoint. Kaplan–Meier analysis showed a clear divergence of in-hospital composite event-free survival stratified according to median troponin value and the presence of renal failure (Log rank p < 0.001). Conclusions: Our findings, derived from a multicenter data collection study, suggest the routine use of biomarkers, such as cardiac troponin and serum creatinine, for in-hospital prediction of CV events in patients with COVID-19
Unraveling Bicuspid Aortic Valve Enigmas by Multimodality Imaging: Clinical Implications
Aortic aneurysm; Bicuspid aortic valve; Computed tomographyAneurisma aòrtic; Vàlvula aòrtica bicúspide; Tomografia computadaAneurisma aórtico; Válvula aórtica bicúspide; Tomografía computadaMultimodality imaging is the basis of the diagnosis, follow-up, and surgical management of bicuspid aortic valve (BAV) patients. Transthoracic echocardiography (TTE) is used in our clinical routine practice as a first line imaging for BAV diagnosis, valvular phenotyping and function, measurement of thoracic aorta, exclusion of other aortic malformations, and for the assessment of complications such are infective endocarditis and aortic. Nevertheless, TTE is less useful if we want to assess accurately other aortic segments such as mid-distal ascending aorta, where computed tomography (CT) and magnetic resonance (CMR) could improve the precision of aorta size measurement by multiplanar reconstructions. A major advantage of CT is its superior spatial resolution, which affords a better definition of valve morphology and calcification, accuracy, and reproducibility of ascending aorta size, and allows for coronary artery assessment. Moreover, CMR offers the opportunity of being able to evaluate aortic functional properties and blood flow patterns. In this setting, new developed sequences such as 4D-flow may provide new parameters to predict events during follow up. The integration of all multimodality information facilitates a comprehensive evaluation of morphologic and dynamic features, stratification of the risk, and therapy guidance of this cohort of patients
Are Aortic Root and Ascending Aorta Diameters Measured by the Pediatric versus the Adult American Society of Echocardiography Guidelines Interchangeable?
Aortic dimensions; Echocardiography; Guideline’s recommendationsDimensions aòrtiques; Ecocardiografia; Recomanacions de les directriusDimensiones aórticas; Ecocardiografía; Recomendaciones de las directricesAscending aorta diameters have important clinical value in the diagnosis, follow-up, and surgical indication of many aortic diseases. However, there is no uniformity among experts regarding ascending aorta diameter quantification by echocardiography. The aim of this study was to compare maximum aortic root and ascending aorta diameters determined by the diastolic leading edge (DLE) and the systolic inner edge (SIE) conventions in adult and pediatric patients with inherited cardiovascular diseases. Transthoracic echocardiograms were performed in 328 consecutive patients (260 adults and 68 children). Aorta diameters were measured twice at the root and ascending aorta by the DLE convention following the 2015 American Society of Echocardiography (ASE) adult guidelines and the SIE convention following the 2010 ASE pediatric guidelines. Comparison of the diameters measured by the two conventions in the overall population showed a non-significant underestimation of the diameter measured by the SIE convention at root level of 0.28 mm (CI −1.36; 1.93) and at tubular ascending aorta level of 0.17 mm (CI −1.69; 2.03). Intraobserver and interobserver variability were excellent. Maximum aorta diameter measured by the leading edge convention in end-diastole and the inner edge convention in mid-systole had similar values to a mild non-significant underestimation of the inner-to-inner method that permits them to be interchangeable when used in clinical practice
Three-dimensional aortic geometry mapping via registration of non-gated contrast-enhanced or gated and respiratory-navigated MR angiographies
Aortic aneurysm; Aortic dilation; Magnetic resonance angiographyAneurisma aórtico; Dilatación aórtica; Angiografía por resonancia magnéticaAneurisma aòrtic; Dilatació aòrtica; Angiografia per ressonància magnèticaBackground
The measurement of aortic dimensions and their evolution are key in the management of patients with aortic diseases. Manual assessment, the current guideline-recommended method and clinical standard, is subjective, poorly reproducible, and time-consuming, limiting the capacity to track aortic growth in everyday practice. Aortic geometry mapping (AGM) via image registration of serial computed tomography angiograms outperforms manual assessment, providing accurate and reproducible 3D maps of aortic diameter and growth rate. This observational study aimed to evaluate the accuracy and reproducibility of AGM on non-gated contrast-enhanced (CE-) and cardiac- and respiratory-gated (GN-) magnetic resonance angiographies (MRA).
Methods
Patients with thoracic aortic disease followed with serial CE-MRA (n = 30) or GN-MRA (n = 15) acquired at least 1 year apart were retrospectively and consecutively identified. Two independent observers measured aortic diameters and growth rates (GR) manually at several thoracic aorta reference levels and with AGM. Agreement between manual and AGM measurements and their inter-observer reproducibility were compared. Reproducibility for aortic diameter and GR maps assessed with AGM was obtained.
Results
Mean follow-up was 3.8 ± 2.3 years for CE- and 2.7 ± 1.6 years for GN-MRA. AGM was feasible in the 93% of CE-MRA pairs and in the 100% of GN-MRA pairs. Manual and AGM diameters showed excellent agreement and inter-observer reproducibility (ICC>0.9) at all anatomical levels. Agreement between manual and AGM GR was more limited, both in the aortic root by GN-MRA (ICC=0.47) and in the thoracic aorta, where higher accuracy was obtained with GN- than with CE-MRA (ICC=0.55 vs 0.43). The inter-observer reproducibility of GR by AGM was superior compared to manual assessment, both with CE- (thoracic: ICC= 0.91 vs 0.51) and GN-MRA (root: ICC=0.84 vs 0.52; thoracic: ICC=0.93 vs 0.60). AGM-based 3D aortic size and growth maps were highly reproducible (median ICC >0.9 for diameters and >0.80 for GR).
Conclusion
Mapping aortic diameter and growth on MRA via 3D image registration is feasible, accurate and outperforms the current manual clinical standard. This technique could broaden the possibilities of clinical and research evaluation of patients with aortic thoracic diseases.This study has been supported by funding from the Instituto de Salud Carlos III (projects PI19/01480, PI20/01727 and PI21/00448), the Spanish Ministry of Science, Innovation and Universities (RTC2019-007280-1), the Spanish Society of Cardiology (SEC/FEC-INV-CLI 20/015), and the Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV). Guala A. has received funding from “la Caixa” Foundation (LCF/BQ/PR22/11920008). Garrido-Oliver J. has received funding from Secretaria d′Universitats i Recerca del Departament de Recerca i Universitats de la Generalitat de Catalunya i del Fons Europeu Social Plus (AGAUR-FI 2023 FI-1 00322 Joan Oró)
Prognosis of Paradoxical Low-Flow Low-Gradient Aortic Stenosis: A Severe, Non-critical Form, With Surgical Treatment Benefits
Aortic stenosis; Echocardiography; Heart valve diseaseEstenosis aórtica; Ecocardiografía; Enfermedad de las válvulas del corazónEstenosi aòrtica; Ecocardiografia; Malaltia de les vàlvules cardíaquesObjectives: To determine the risk of mortality and need for aortic valve replacement (AVR) in patients with low-flow low-gradient (LFLG) aortic stenosis (AS).
Methods: A longitudinal multicentre study including consecutive patients with severe AS (aortic valve area [AVA] 35 ml/m2) and LFLG (mean gradient < 40 mmHg, SVi ≤ 35 ml/m2).
Results: Of 1,391 patients, 147 (10.5%) had LFLG, 752 (54.1%) HG, and 492 (35.4%) NFLG. Echocardiographic parameters of the LFLG group showed similar AVA to the HG group but with less severity in the dimensionless index, calcification, and hypertrophy. The HG group required AVR earlier than NFLG (p < 0.001) and LFLG (p < 0.001), with no differences between LFLG and NFLG groups (p = 0.358). Overall mortality was 27.7% (CI 95% 25.3–30.1) with no differences among groups (p = 0.319). The impact of AVR in terms of overall mortality reduction was observed the most in patients with HG (hazard ratio [HR]: 0.17; 95% CI: 0.12–0.23; p < 0.001), followed by patients with LFLG (HR: 0.25; 95% CI: 0.13–0.49; p < 0.001), and finally patients with NFLG (HR: 0.29; 95% CI: 0.20–0.44; p < 0.001), with a risk reduction of 84, 75, and 71%, respectively.
Conclusions: Paradoxical LFLG AS affects 10.5% of severe AS, and has a lower need for AVR than the HG group and similar to the NFLG group, with no differences in mortality. AVR had a lower impact on LFLG AS compared with HG AS. Therefore, the findings of the present study showed LFLG AS to have an intermediate clinical risk profile between the HG and NFHG groups.AGu has received funding from the Spanish Ministry of Science, Innovation and Universities (IJC2018- 037349-I)