103 research outputs found

    The complete mitochondrial genome of Yarrowia lipolytica

    Get PDF
    We here report the complete nucleotide sequence of the 47.9 kb mitochondrial (mt) genome from the obligate aerobic yeast Yarrowia lipolytica. It encodes, all on the same strand, seven subunits of NADH: ubiquinone oxidoreductase (ND1-6, ND4L), apocytochrome b (COB), three subunits of cytochrome oxidase (COX1, 2, 3), three subunits of ATP synthetase (ATP6, 8 and 9), small and large ribosomal RNAs and an incomplete set of tRNAs. The Y. lipolytica mt genome is very similar to the Hansenula wingei mt genome, as judged from blocks of conserved gene order and from sequence homology. The extra DNA in the Y. lipolytica mt genome consists of 17 group 1 introns and stretches of A+Trich sequence, interspersed with potentially transposable GC clusters. The usual mould mt genetic code is used. Interestingly, there is no tRNA able to read CGN (arginine) codons. CGN codons could not be found in exonic open reading frames, whereas they do occur in intronic open reading frames. However, several of the intronic open reading frames have accumulated mutations and must be regarded as pseudogenes. We propose that this may have been triggered by the presence of untranslatable CGN codons. This sequence is available under EMBL Accession No. AJ307410

    La levure Geotrichum candidum (taxonomie, biodiversité et génome)

    Get PDF
    Geotrichum candidum est une levure hĂ©miascomycĂšte ubiquitaire longtemps considĂ©rĂ©e comme un champignon filamenteux. C est l une des levures les plus frĂ©quemment trouvĂ©es dans les fromages dans les quelles elle contribue Ă  l affinage. Dans le cadre du projet ANR ALIA Food Microbiomes en partenariat avec des industriels fromagers et producteur de levain, nous avons caractĂ©risĂ© l espĂšce G. candidum par une Ă©tude phylogĂ©nĂ©tique et placĂ© de maniĂšre non ambigĂŒe G. candidum parmi les levures hĂ©miascomĂštes. Une analyse MLST a permis de sĂ©parer les souches Ă©tudiĂ©es en deux groupes. Le premier contient essentiellement des souches environnementales tandis que le second ne contient que des souches isolĂ© du fromage. Cela suggĂšre une certaine sĂ©lection ou spĂ©cialisation d un groupe de souche dans la fabrication du fromage. Une mĂ©thode de typage inter LTR plus discriminante a permis de typer l ensemble des souches et peut fournir aux industriels un outil robuste pour le suivi d une souche en production. Le gĂ©nome de G. candidum CLIB 918 = ATCC 204307 a Ă©tĂ© sĂ©quencĂ©. Les premiĂšres analyses ont mis en Ă©vidence des discontinuitĂ©s Ă©volutives parmi les gĂšnes qui le composent. Parmi les 6802 gĂšnes identifiĂ©s, 315 gĂšnes prĂ©sentent des orthologues chez les champignons filamenteux et non chez les levures. Cela suggĂšre que durant l Ă©volution, G. candidum a conservĂ© un grand nombre de gĂšnes qui a Ă©tĂ© perdu chez les autres levures ou en a reçu certain par transfert horizontal de gĂšnes. L existence de ce mĂȘme type de gĂšnes chez d autres levures ayant une position basale dans l arbre des hĂ©miascomycĂštes, suggĂšre que G. candidum et ces levures ont une position intermĂ©diaire lors de la transition Ă©volutive champignon vers levure. Il est Ă  noter que certains d entre eux sont impliquĂ©s dans le mĂ©tabolisme et pourraient jouer un rĂŽle dans l adaptation de cette levure Ă  la fabrication du fromage.Geotrichum candidum is a hemiascomycetous yeast frequently found in the environment and foodstuffs. It is one of the main yeasts in cheese and it is widely used as adjunct culture in the maturation of cheese. Within ANR project ALIA Food Microbiomes in partnership with industry, we characterized the species the species G. candidum by a multigene phylogenetic study. MLST analysis allowed us to separate the studied strains into two groups. The first contains mainly environmental strains while the second contains only strains isolated from cheese. This suggests a specialization or a selection of a group of strains within industry. We developed a typing method by inter LTR profiles, which can provide a robust tool for an industrial monitoring of strains. The genome of G. candidum CLIB 918 = ATCC 204307 was sequenced. Preliminary analyses revealed evolutionary discontinuities among genes. 6802 genes where identified in which 315 genes have orthologs in filamentous fungi and not in yeast. This suggests that during evolution, G. candidum has retained a large number of genes which have been lost in other yeasts or has received some by horizontal gene transfer. The existence of this other yeasts also having a basal position in hemiascomycetous tree suggests that G. candidum and these other yeasts have an intermediate position during the evolutionary transition fungus to yeast. It is noteworthy that some of them are involved in the metabolism and may play a role in the adaptation of the yeast to the cheese environment.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Deposit of microbial strains in public service collections as part of the publication process to underpin good practice in science

    Get PDF
    Despite recommendations to release microbial resources to the community post-publication, the reality is far from satisfying. A workshop discussed the need for a coordinated and effective deposition policy for 'key' microbial strains and proposes a set of criteria to facilitate their deposition into public service collections. The majority of authors either contacted directly or during submission of manuscripts to several international, mainly European bacteriology journals agreed to this set of 'key strain' criteria and to the voluntarily deposition of resources into public resource centres.The authors thank additional members of the 2011 Braunschweig workshop: Jorg Overmann, Esperanza Garay-Auban, Peter Kampfer, Yohan Lecuona, James I Prosser, Ramon Rosello-Mora, Karl-Heinz Schleifer, and Kornelia Smalla. The workshop was an initiative of the European Consortium of Microbial Resource Centres (EMbaRC), supported by the European Commission's Seventh Framework Programme (FP7, 2007-2013), Research Infrastructures action, under the grant agreement No. FP7-228310. This communication received funding from the European Union's Seventh Framework Programme for Research, Technological Development and Demonstration under grant agreement no 312251. Additionally, thanks go to all those attending the February 2014 MIRRI Heads of Collections meeting who participated in the discussions, including some of those above plus Pedro Crous, Edward Moore, Oleg Stupar, Chantal Bizet, Dominique Clermont, Rosa Aznar, Paul Devos, and Anna Misiewicz

    Genomic Exploration of the Hemiascomycetous Yeasts: 7. Saccharomyces servazzii

    Get PDF
    AbstractThe genome of Saccharomyces servazzii was analyzed with 2570 random sequence tags totalling 2.3 Mb. BLASTX comparisons revealed a minimum of 1420 putative open reading frames with significant homology to Saccharomyces cerevisiae (58% aa identity on average), two with Schizosaccharomyces pombe and one with a human protein, confirming that S. servazzii is closely related to S. cerevisiae. About 25% of the S. servazzii genes were identified, assuming that the gene complement is identical in both yeasts. S. servazzii carries very few transposable elements related to Ty elements in S. cerevisiae. Most of the mitochondrial genes were identified in eight contigs altogether spanning 25 kb for a predicted size of 29 kb. A significant match with the Kluyveromyces lactis linear DNA plasmid pGKL-1 encoded RF4 killer protein suggests that a related plasmid exists in S. servazzii. The sequences have been deposited with EMBL under the accession numbers AL402279–AL404848

    Fungal Species Diversity in French Bread Sourdoughs Made of Organic Wheat Flour

    Get PDF
    Microbial communities are essential for the maintenance and functioning of ecosystems, including fermented food ecosystems. The analysis of food microbial communities is mainly focused on lactic acid bacteria (LAB), while yeast diversity is less understood. Here, we describe the fungal diversity of a typical food fermented product, sourdough bread. The species diversity of 14 sourdoughs collected from bakeries located all over France was analyzed. Bakeries were chosen to represent diverse bakery practices and included bakers and farmer-bakers. Both non-culture-based (pyrosequencing of Internal Transcribed Spacer 1 amplicons) and culture-based methods were used. While both identification methods were in agreement regarding the dominant yeast species of each sourdough, the ITS1 metabarcoding analysis identified an increased number of fungal species in sourdough communities. Two third of the identified sequences obtained from sourdoughs were Saccharomycetales, mostly in the Kazachstania genus. No Saccharomycetales species was shared by all the sourdoughs, whereas five other fungal species, mainly known plant pathogens, were found in all sourdoughs. Interestingly, Saccharomyces cerevisiae, known as “baker’s yeast,” was identified as the dominant species in only one sourdough. By contrast, five Kazachstania species were identified as the dominant sourdough species, including one recently described Kazachstania species, Kazachstania saulgeensis and an undescribed Kazachstania sp. Sourdoughs from farmer-bakers harbored Kazachstania bulderi, Kazachstania unispora and two newly described Kazachstania species, while sourdough from bakers mostly carried Kazachstania humilis as the dominant species. Such yeast diversity has not been found in sourdoughs before, highlighting the need to maintain different traditional food practices to conserve microbial diversity

    Genomic Exploration of the Hemiascomycetous Yeasts: 6. Saccharomyces exiguus

    Get PDF
    AbstractRandom sequence tags were obtained from a genomic DNA library of Saccharomyces exiguus. The mitochondrial genome appeared to be at least 25.7 kb in size, with a different organization compared to Saccharomyces cerevisiae. An unusual putative 953 bp long terminal repeated element associated to Ty3 was found. A set of 1451 genes was identified homologous to S. cerevisiae open reading frames. Only five genes were identified outside the S. cerevisiae taxon, confirming that S. exiguus is phylogenetically closely related to S. cerevisiae. Unexpectedly, numerous duplicated genes were found whereas they are unique in S. cerevisiae. The sequences are deposited at EMBL under the accession numbers: AL407377–AL409955

    Genomic Exploration of the Hemiascomycetous Yeasts: 1. A set of yeast species for molecular evolution studies11Sequences and annotations are accessible at: GĂ©noscope (http://www.genoscope.cns.fr), FEBS Letters Website (http://www.elsevier.nl/febs/show/), Bordeaux (http://cbi.genopole-bordeaux.fr/Genolevures) and were deposited into the EMBL database (accession number from AL392203 to AL441602).

    Get PDF
    AbstractThe identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20 000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the ‘yeast-specific’ genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated ‘GĂ©nolevures’

    Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation

    Get PDF
    We recently described the presence of large chromosomal segments resulting from independent horizontal gene transfer (HGT) events in the genome of Saccharomyces cerevisiae strains, mostly of wine origin. We report here evidence for the amplification of one of these segments, a 17 kb DNA segment from Zygosaccharomyces bailii, in the genome of S. cerevisiae strains. The copy number, organization and location of this region differ considerably between strains, indicating that the insertions are independent and that they are post-HGT events. We identified eight different forms in 28 S. cerevisiae strains, mostly of wine origin, with up to four different copies in a single strain. The organization of these forms and the identification of an autonomously replicating sequence functional in S. cerevisiae, strongly suggest that an extrachromosomal circular DNA (eccDNA) molecule serves as an intermediate in the amplification of the Z. bailii region in yeast genomes. We found little or no sequence similarity at the breakpoint regions, suggesting that the insertions may be mediated by nonhomologous recombination. The diversity between these regions in S. cerevisiae represents roughly one third the divergence among the genomes of wine strains, which confirms the recent origin of this event, posterior to the start of wine strain expansion. This is the first report of a circle-based mechanism for the expansion of a DNA segment, mediated by nonhomologous recombination, in natural yeast populations

    The genomes of fermentative Saccharomyces

    No full text
    C. R. Biol. ISI Document Delivery No.: 809CL Times Cited: 2 Cited Reference Count: 75 Dequin, Sylvie Casaregola, Serge INRA; European Community [FP7-228310] This work was supported by INRA. This work has received funding from the European Community's Seventh Framework Programme (FP7, 2007-2013), Research Infrastructures action, under the grant agreement No. FP7-228310 (EMbaRC project). Elsevier france-editions scientifiques medicales elsevier Paris SiMany different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes. (C) 2011 Published by Elsevier Masson SAS on behalf of Academie des sciences
    • 

    corecore