1,372 research outputs found
Missing energy in black hole production and decay at the Large Hadron Collider
Black holes could be produced at the Large Hadron Collider in TeV-scale
gravity scenarios. We discuss missing energy mechanisms in black hole
production and decay in large extra-dimensional models. In particular, we
examine how graviton emission into the bulk could give the black hole enough
recoil to leave the brane. Such a perturbation would cause an abrupt
termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference
Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes
A detailed numerical analysis is performed to obtain the Hawking spectrum for
charged, massive brane scalars and fermions on the approximate background of a
brane charged rotating higher-dimensional black hole constructed in
arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first
order system of differential wave equations not only for fermions, but for
scalars as well and integrate it numerically. Flux spectra are presented for
non-zero mass, charge and rotation, confirming and extending previous results
based on analytic approximations. In particular we describe an inverted charge
splitting at low energies, which is not present in four or five dimensions and
increases with the number of extra dimensions. This provides another signature
of the evaporation of higher-dimensional black holes in TeV scale gravity
scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a
discussion on higher spins, added reference
Evaporation of large black holes in AdS: greybody factor and decay rate
We consider a massless, minimally coupled scalar field propagating through
the geometry of a black 3-brane in an asymptotically space.
The wave equation for modes traveling purely in the holographic direction
reduces to a Heun equation and the corresponding greybody factor is obtained
numerically. Approximations valid in the low- and high-frequency regimes are
also obtained analytically. The greybody factor is then used to determine the
rate of evaporation of these large black holes in the context of the evaporon
model proposed in \cite{Rocha:2008fe}. This setting represents the evolution of
a black hole under Hawking evaporation with a known CFT dual description and is
therefore unitary. Information must then be preserved under this evaporation
process.Comment: 20 pages, 2 figures; v2: added references, published versio
Brane Decay of a (4+n)-Dimensional Rotating Black Hole. III: spin-1/2 particles
In this work, we have continued the study of the Hawking radiation on the
brane from a higher-dimensional rotating black hole by investigating the
emission of fermionic modes. A comprehensive analysis is performed that leads
to the particle, power and angular momentum emission rates, and sheds light on
their dependence on fundamental parameters of the theory, such as the spacetime
dimension and angular momentum of the black hole. In addition, the angular
distribution of the emitted modes, in terms of the number of particles and
energy, is thoroughly studied. Our results are valid for arbitrary values of
the energy of the emitted particles, dimension of spacetime and angular
momentum of the black hole, and complement previous results on the emission of
brane-localised scalars and gauge bosons.Comment: Latex file, JHEP style, 34 pages, 16 figures Energy range in plots
increased, minor changes, version published in JHE
- …