7 research outputs found

    Advanced cell-based modeling of the royal disease: characterization of the mutated F9 mRNA

    Get PDF
    Essentials The Royal disease (RD) is a form of hemophilia B predicted to be caused by a splicing mutation. We generated an iPSC-based model of the disease allowing mechanistic studies at the RNA level. F9 mRNA analysis in iPSC-derived hepatocyte-like cells showed the predicted abnormal splicing. Mutated F9 mRNA level was very low but we also found traces of wild type transcripts. SUMMARY: Background The royal disease is a form of hemophilia B (HB) that affected many descendants of Queen Victoria in the 19th and 20th centuries. It was found to be caused by the mutation F9 c.278-3A>G. Objective To generate a physiological cell model of the disease and to study F9 expression at the RNA level. Methods Using fibroblasts from skin biopsies of a previously identified hemophilic patient bearing the F9 c.278-3A>G mutation and his mother, we generated induced pluripotent stem cells (iPSCs). Both the patient's and mother's iPSCs were differentiated into hepatocyte-like cells (HLCs) and their F9 mRNA was analyzed using next-generation sequencing (NGS). Results and Conclusion We demonstrated the previously predicted aberrant splicing of the F9 transcript as a result of an intronic nucleotide substitution leading to a frameshift and the generation of a premature termination codon (PTC). The F9 mRNA level in the patient's HLCs was significantly reduced compared with that of his mother, suggesting that mutated transcripts undergo nonsense-mediated decay (NMD), a cellular mechanism that degrades PTC-containing mRNAs. We also detected small proportions of correctly spliced transcripts in the patient's HLCs, which, combined with genetic variability in splicing and NMD machineries, could partially explain some clinical variability among affected members of the European royal families who had lifespans above the average. This work allowed the demonstration of the pathologic consequences of an intronic mutation in the F9 gene and represents the first bona fide cellular model of HB allowing the study of rare mutations at the RNA level

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    On the accuracy and performance of the geomobile system

    No full text
    direct orientation of any sensor mounted on a roof platform. The GEOMÒBIL system is composed of the following subsystems: orientation subsystem, image subsystem, laser ranging subsystem, synchronization subsystem, power and environmental control subsystem and data extraction software subsystem. After a brief description of the GEOMÒBIL system, the paper focuses on the calibration and performance of the GEOMÒBIL image subsystem. It describes the calibration of the CCD (Coupled-Charged Device), cameras used (camera calibration) and the calibration of the boresight parameters (eccentricity and misalignment of the image sensors with reference to the GPS/IMU reference frame). The accuracy and stability of the boresight camera calibration are also discussed. In order to evaluate the accuracy and performance of the system, several missions have been carried out under different configurations and environments. An operator has measured elements in the images by using data extraction software developed by the ICC as part of the GEOMÒBIL system. The results of the campaigns in terms of the accuracy and performance of the GEOMÒBIL are discussed and conclusions are drawn. Finally, the paper gives a brief description of the future developments related to the integration of new sensors into the GEOMÒBIL platform. In particular, a terrestrial laser scanner has recently been installed and the first results are presented. 1

    Myeloid-derived Suppressor Cells in Cancer: A Review on the Pathogenesis and Therapeutic Potentials

    No full text
    corecore